Abelian varieties, $l$-adic representations and~$\mathrm{SL}_2$
Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 275-288

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the Lie algebra of a Galois group which operates on the Tate module of a two- or three-dimensional Abelian variety is calculated. It is assumed that the Abelian variety does not have nontrivial endomorphisms and is defined over a global field with characteristic greater than two. Bibliography: 14 titles.
@article{IM2_1980_14_2_a3,
     author = {Yu. G. Zarhin},
     title = {Abelian varieties, $l$-adic representations and~$\mathrm{SL}_2$},
     journal = {Izvestiya. Mathematics },
     pages = {275--288},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a3/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Abelian varieties, $l$-adic representations and~$\mathrm{SL}_2$
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 275
EP  - 288
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a3/
LA  - en
ID  - IM2_1980_14_2_a3
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Abelian varieties, $l$-adic representations and~$\mathrm{SL}_2$
%J Izvestiya. Mathematics 
%D 1980
%P 275-288
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a3/
%G en
%F IM2_1980_14_2_a3
Yu. G. Zarhin. Abelian varieties, $l$-adic representations and~$\mathrm{SL}_2$. Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 275-288. http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a3/