Abelian varieties, $l$-adic representations and~$\mathrm{SL}_2$
Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 275-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the Lie algebra of a Galois group which operates on the Tate module of a two- or three-dimensional Abelian variety is calculated. It is assumed that the Abelian variety does not have nontrivial endomorphisms and is defined over a global field with characteristic greater than two. Bibliography: 14 titles.
@article{IM2_1980_14_2_a3,
     author = {Yu. G. Zarhin},
     title = {Abelian varieties, $l$-adic representations and~$\mathrm{SL}_2$},
     journal = {Izvestiya. Mathematics },
     pages = {275--288},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a3/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Abelian varieties, $l$-adic representations and~$\mathrm{SL}_2$
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 275
EP  - 288
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a3/
LA  - en
ID  - IM2_1980_14_2_a3
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Abelian varieties, $l$-adic representations and~$\mathrm{SL}_2$
%J Izvestiya. Mathematics 
%D 1980
%P 275-288
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a3/
%G en
%F IM2_1980_14_2_a3
Yu. G. Zarhin. Abelian varieties, $l$-adic representations and~$\mathrm{SL}_2$. Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 275-288. http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a3/

[1] Tate J., Algebraic Cycles and poles of zeta functions in Arithmetical algebraic geometry, N.Y., 1965, 93–110 | MR | Zbl

[2] Serr Zh.-P., Abelevy $l$-adicheskie predstavleniya i ellipticheskie krivye, Mir, M., 1973 | Zbl

[3] Igusa J., “Fibre systems of Jacobian varieties, III”, Amer. J. Math., 81 (1959), 453–476 | DOI | MR | Zbl

[4] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971

[5] Tate J., “Endomorphismes of Abelian varieties over finite fields”, Invent. Math., 2:2 (1966), 134–144 ; Matematika, 12:6 (1968), 31–40 | DOI | MR | Zbl

[6] Tate J., “Classes d'isogenie des varietes abeliennes sur un corps fini”, Seminaire Bourbaki, 352, 1968; Matematika, 14:6 (1970), 129–137 | MR | Zbl

[7] Serre J.-P., Tate J., “Good reduction of abelian varieties”, Ann. Math., 88:3 (1968), 492–517 ; Matematika, 15:5 (1971), 140–165 | DOI | MR | Zbl | Zbl

[8] Veil A., Osnovy teorii chisel, Mir, M., 1972 | MR

[9] Zarkhin Yu. G., “Abelevy mnogoobraziya v kharakteristike $P$”, Matem. zametki, 19:3 (1976), 393–400 | MR | Zbl

[10] Zarkhin Yu. G., “Kruchenie abelevykh mnogoobrazii v konechnoi kharakteristike”, Matem. zametki, 22:1 (1977), 3–11 | Zbl

[11] Ragunatan M., Diskretnye podgruppy grupp Li, Mir, M., 1977 | MR

[12] Serr Zh.-P., Algebry Li i gruppy Li, Mir, M., 1969 | MR | Zbl

[13] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR

[14] Burbaki N., Gruppy i algebry Li, gl. VII, VIII, Mir, M., 1978 | MR