An~integral estimate for the derivative of a~rational function
Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 257-273

Voir la notice de l'article provenant de la source Math-Net.Ru

Let there be given numbers $\alpha,q,\lambda,p$ and $n$, $0\alpha\infty$, $1\leqslant q\leqslant\infty$, $0\lambda\leqslant\infty$, $1$, $n=1,2,\dots$, and let $R(n,p)$ be the class of rational functions $\rho(z)$ of degree $\leqslant n$, analytic for $|z|\leqslant1$, with \begin{gather*} \|\rho\|_p=\biggl(\,\int_{|\zeta|=1}|\rho(\zeta)|^p\,|d\zeta|\biggr)^{1/p}\leqslant1\\ (\|\rho\|_\infty=\sup\{|\rho(z)|:|z|=1\}). \end{gather*} It is proved that, if $\alpha\geqslant1+p^{-1}-q^{-1}$, then $$ \sup\biggl\{\biggl[\,\int_0^1(1-r)^{\alpha\lambda-1}\biggl(\,\int_0^{2\pi}|\rho(r\cdot e^{i\varphi}|^q\,d\varphi\biggr)^{\lambda/q}\,dr\biggr]^{1/\lambda}:\rho\in R(n,p)\biggr\}\infty. $$ Bibliography: 6 titles.
@article{IM2_1980_14_2_a2,
     author = {V. I. Danchenko},
     title = {An~integral estimate for the derivative of a~rational function},
     journal = {Izvestiya. Mathematics },
     pages = {257--273},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a2/}
}
TY  - JOUR
AU  - V. I. Danchenko
TI  - An~integral estimate for the derivative of a~rational function
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 257
EP  - 273
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a2/
LA  - en
ID  - IM2_1980_14_2_a2
ER  - 
%0 Journal Article
%A V. I. Danchenko
%T An~integral estimate for the derivative of a~rational function
%J Izvestiya. Mathematics 
%D 1980
%P 257-273
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a2/
%G en
%F IM2_1980_14_2_a2
V. I. Danchenko. An~integral estimate for the derivative of a~rational function. Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 257-273. http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a2/