On the dimension of the group of automorphisms of an analytic hypersurface
Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 223-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a nondegenerate real analytic hypersurface in $\mathbf C^2$, let $\xi\in M$, and let $G_\xi$ consist of the automorphisms of $M$ fixing the point $\xi$. Then, as follows from a theorem of Moser, the real dimension of $G_\xi$ does not exceed 5. Here it is shown that 1) dimensions 2, 3, and 4 cannot be realized, but for 0, 1, and 5 examples are given; 2) if the point $\xi$ is not umbilical, then $G_\xi$ consists of not more than two mappings. Bibliography: 4 titles.
@article{IM2_1980_14_2_a0,
     author = {V. K. Beloshapka},
     title = {On the dimension of the group of automorphisms of an analytic hypersurface},
     journal = {Izvestiya. Mathematics },
     pages = {223--245},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a0/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - On the dimension of the group of automorphisms of an analytic hypersurface
JO  - Izvestiya. Mathematics 
PY  - 1980
SP  - 223
EP  - 245
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a0/
LA  - en
ID  - IM2_1980_14_2_a0
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T On the dimension of the group of automorphisms of an analytic hypersurface
%J Izvestiya. Mathematics 
%D 1980
%P 223-245
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a0/
%G en
%F IM2_1980_14_2_a0
V. K. Beloshapka. On the dimension of the group of automorphisms of an analytic hypersurface. Izvestiya. Mathematics , Tome 14 (1980) no. 2, pp. 223-245. http://geodesic.mathdoc.fr/item/IM2_1980_14_2_a0/

[1] Cartan E., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, I”, Ann. Math. Pura Appl. (4), 11:1 (1932), 17–90, Oeuvres II, 2, 11231–1304 | DOI | MR | Zbl

[2] Tresse A., Détermination des invariants ponctuels de l'equation différentielle ordinaire du second ordre $y''=\omega(x,y,y')$, Leipzig. 87 S. gr. $8^\circ$, 1896 | Zbl

[3] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3,4 (1974), 219–271 | DOI | MR

[4] Burns I., Shnider S., Wells R., Deformation of strongly pseudoconvex domains, preprint, 1974