Explicit form of the law of reciprocity
Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 557-588.

Voir la notice de l'article provenant de la source Math-Net.Ru

A pairing in the multiplicative group of a local field (a finite extension of a $p$-adic number field) is defined in terms of the expansion of elements into series in a local uniformizing parameter. The main properties of this pairing are proved: bilinearity, skew-symmetry, invariance with respect to choice of local uniformizing parameter, and independence of the choice of expansion of elements into series in this uniformizing parameter. In addition, the norm property of this pairing is examined. The main result of this paper is that this pairing coincides with Hilbert's norm residue symbol. This yields an explicit formula for the latter. Bibliography: 9 titles.
@article{IM2_1979_13_3_a2,
     author = {S. V. Vostokov},
     title = {Explicit form of the law of reciprocity},
     journal = {Izvestiya. Mathematics },
     pages = {557--588},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a2/}
}
TY  - JOUR
AU  - S. V. Vostokov
TI  - Explicit form of the law of reciprocity
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 557
EP  - 588
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a2/
LA  - en
ID  - IM2_1979_13_3_a2
ER  - 
%0 Journal Article
%A S. V. Vostokov
%T Explicit form of the law of reciprocity
%J Izvestiya. Mathematics 
%D 1979
%P 557-588
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a2/
%G en
%F IM2_1979_13_3_a2
S. V. Vostokov. Explicit form of the law of reciprocity. Izvestiya. Mathematics , Tome 13 (1979) no. 3, pp. 557-588. http://geodesic.mathdoc.fr/item/IM2_1979_13_3_a2/

[1] Artin E., Hasse H., “Die beiden Ergänzungssatze zum Reziprozitätsgesetz der $l^n$-ten Potenzreste im Körper der $l^n$-ten Einheitswurzeln”, Abh. Mathem. Seminar, 6, Hamburg, 1928, 146–162 | Zbl

[2] Hasse H., Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. II. Reziprozitätsgesetz, Leipzig, Berlin, 1930

[3] Hasse H., “Die Gruppe der $p^n$-primären Zahlen für einen Primteiler $\mathfrak p$ von $p$”, J. reine und angew. Math., 176 (1936), 174–183 | Zbl

[4] Iwasawa K., “On explizit formulas for the norm residue symbol”, J. Math. Soc. Japan, 20 (1968), 151–164 | MR

[5] Shafarevich I. R., “Obschii zakon vzaimnosti”, Matem. sb., 26(68):1 (1950), 113–146 | Zbl

[6] Lapin A. I., “Teoriya simvola Shafarevicha”, Izv. AN SSSR. Ser. matem., 17:1 (1953), 31–50 | MR | Zbl

[7] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR

[8] Vostokov S. V., “Ortogonalnyi bazis lokalnogo polya”, Izv. AN SSSR. Ser. matem., 37 (1973), 1228–1240 | MR | Zbl

[9] Vostokov S. V., “Vtoroi mnozhitel v zakone vzaimnosti”, Zap. nauchn. seminarov Leningr. otd. Matem. in-ta AN SSSR, 75, 1978, 59–66 | MR | Zbl