Bases of exponential functions in the spaces~$E^p$ on convex polygons
Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 387-404

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a convex polygon in the complex plane; let $a_1,a_2,\dots,a_m$ $(m\geq 3)$ be its vertices, numbered in the order of a circuit around $D$ in the positive direction; let $\varphi_k=\arg(a_{k+1}-a_k)-\pi/2$; and let $2l_k$ be the length of the edge $a_k$, $a_{k+1}$. Let $\Lambda=\Lambda_1\cup\Lambda_2\cup\dots\cup\Lambda_m$, where $$ \Lambda_k=\biggl\{l^{-1}_ke^{-i\varphi_k}\biggl(\pi n+\frac\pi2+\alpha_k+\varepsilon_{kn}\biggr)\biggr\}_{n=0}^{+\infty},\quad k=1,2,\dots,m. $$ If $\alpha_1+\dots+\alpha_m=0$ and $\{\varepsilon_{kn}\}\in l^2$ for $p\geqslant2$ and $\{\varepsilon_{kn}\}\in l^p$ for $1$, $ k=1,2,\dots,m$, then $\{\exp(\lambda_nz)\}$, $\lambda_n\in\Lambda$, is a basis in the space $E^p(D)$, $1$. Bibliography: 16 titles.
@article{IM2_1979_13_2_a8,
     author = {A. M. Sedletskii},
     title = {Bases of exponential functions in the spaces~$E^p$ on convex polygons},
     journal = {Izvestiya. Mathematics },
     pages = {387--404},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a8/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Bases of exponential functions in the spaces~$E^p$ on convex polygons
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 387
EP  - 404
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a8/
LA  - en
ID  - IM2_1979_13_2_a8
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Bases of exponential functions in the spaces~$E^p$ on convex polygons
%J Izvestiya. Mathematics 
%D 1979
%P 387-404
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a8/
%G en
%F IM2_1979_13_2_a8
A. M. Sedletskii. Bases of exponential functions in the spaces~$E^p$ on convex polygons. Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 387-404. http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a8/