Bases of exponential functions in the spaces~$E^p$ on convex polygons
Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 387-404.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a convex polygon in the complex plane; let $a_1,a_2,\dots,a_m$ $(m\geq 3)$ be its vertices, numbered in the order of a circuit around $D$ in the positive direction; let $\varphi_k=\arg(a_{k+1}-a_k)-\pi/2$; and let $2l_k$ be the length of the edge $a_k$, $a_{k+1}$. Let $\Lambda=\Lambda_1\cup\Lambda_2\cup\dots\cup\Lambda_m$, where $$ \Lambda_k=\biggl\{l^{-1}_ke^{-i\varphi_k}\biggl(\pi n+\frac\pi2+\alpha_k+\varepsilon_{kn}\biggr)\biggr\}_{n=0}^{+\infty},\quad k=1,2,\dots,m. $$ If $\alpha_1+\dots+\alpha_m=0$ and $\{\varepsilon_{kn}\}\in l^2$ for $p\geqslant2$ and $\{\varepsilon_{kn}\}\in l^p$ for $1$, $ k=1,2,\dots,m$, then $\{\exp(\lambda_nz)\}$, $\lambda_n\in\Lambda$, is a basis in the space $E^p(D)$, $1$. Bibliography: 16 titles.
@article{IM2_1979_13_2_a8,
     author = {A. M. Sedletskii},
     title = {Bases of exponential functions in the spaces~$E^p$ on convex polygons},
     journal = {Izvestiya. Mathematics },
     pages = {387--404},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a8/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Bases of exponential functions in the spaces~$E^p$ on convex polygons
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 387
EP  - 404
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a8/
LA  - en
ID  - IM2_1979_13_2_a8
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Bases of exponential functions in the spaces~$E^p$ on convex polygons
%J Izvestiya. Mathematics 
%D 1979
%P 387-404
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a8/
%G en
%F IM2_1979_13_2_a8
A. M. Sedletskii. Bases of exponential functions in the spaces~$E^p$ on convex polygons. Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 387-404. http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a8/

[1] Duren P. L., Theory of $H^p$-spaces, New York, 1970 | MR

[2] Sedletskii A. M., “Periodicheskoe v srednem prodolzhenie i bazisy pokazatelnykh funktsii v $L^p(-\pi,\pi)$”, Matem. zametki, 12:1 (1972), 37–42 | MR

[3] Sedletskii A. M., “Ekvivalentnye posledovatelnosti v nekotorykh prostranstvakh funktsii”, Izv. vysshikh uchebnykh zavedenii, matematika, 1973, no. 7, 85–91

[4] Levin B. Ya., Lyubarskii Yu. I., “Interpolyatsiya tselymi funktsiyami spetsialnykh klassov i svyazannye s neyu razlozheniya v ryady eksponent”, Izv. AN SSSR. Ser. matem., 39 (1975), 657–702 | MR | Zbl

[5] Leontev A. F., “O predstavlenii analiticheskoi funktsii v vide summy periodicheskikh”, Matem. sb., 93:4 (1974), 512–528 | MR

[6] Sedletskii A. M., “Ekvivalentnoe opredelenie prostranstv $H^p$ v poluploskosti i nekotorye prilozheniya”, Matem. sb., 96:1 (1975), 75–82

[7] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[8] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1965 | MR

[9] Dzyadyk V. K., “Ob usloviyakh skhodimosti ryadov Dirikhle na zamknutykh mnogougolnikakh”, Matem. sb., 95:4 (1974), 475–493

[10] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[11] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M., L., 1950

[12] Khvedelidze B. V., “Lineinye razryvnye granichnye zadachi teorii funktsii, singulyarnye integralnye uravneniya i nekotorye ikh prilozheniya”, Tr. Tbilissk. matem. in-ta AN GruzSSR, 23, 1956, 3–158

[13] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[14] D'edonne Zh., “Biortogonalnye sistemy”, Matematika, 3:4 (1959), 133–145

[15] Gokhberg I. Ts., Markus A. S., “Ob ustoichivosti bazisov banakhovykh i gilbertovykh prostranstv”, Izv. AN Moldavskoi SSR, 1962, no. 5, 17–35

[16] Dei M., Normirovannye lineinye prostranstva, IL, M., 1961