Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1979_13_2_a7, author = {V. P. Maslov and P. P. Mosolov}, title = {The asymptotic behavior as $N\to\infty$ of the trajectories of~$N$ point masses interacting in accordance with {Newton's} law of gravitation}, journal = {Izvestiya. Mathematics }, pages = {349--386}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {1979}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a7/} }
TY - JOUR AU - V. P. Maslov AU - P. P. Mosolov TI - The asymptotic behavior as $N\to\infty$ of the trajectories of~$N$ point masses interacting in accordance with Newton's law of gravitation JO - Izvestiya. Mathematics PY - 1979 SP - 349 EP - 386 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a7/ LA - en ID - IM2_1979_13_2_a7 ER -
%0 Journal Article %A V. P. Maslov %A P. P. Mosolov %T The asymptotic behavior as $N\to\infty$ of the trajectories of~$N$ point masses interacting in accordance with Newton's law of gravitation %J Izvestiya. Mathematics %D 1979 %P 349-386 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a7/ %G en %F IM2_1979_13_2_a7
V. P. Maslov; P. P. Mosolov. The asymptotic behavior as $N\to\infty$ of the trajectories of~$N$ point masses interacting in accordance with Newton's law of gravitation. Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 349-386. http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a7/
[1] Gott J. R. III, Turner E. L., “Croups of galaxies. III. Mass-to-light ratios and crossing time”, Astrophys. J., 213:2 (1977), 309–322 | DOI
[2] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., L., 1946 | MR
[3] Klimontovich Yu. L., Kineticheskaya teoriya neidealnogo gaza i neidealnoi plazmy, Nauka, M., 1975 | MR
[4] Maslov V. P., Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR
[5] Belavkin V. P., Maslov V. P., “Metod uniformizatsii v teorii nelineinykh gamiltonovykh sistem tipa Vlasova i Khartri”, ZhTMF, 33:1 (1977), 17–31 | MR
[6] Chaljub-Simon A., “Existence globale d'une solution du probléme de Cauchy pour le systéme d'equations deriveés partielles de Liouville–Newton”, C. R. Acad. Sc. Paris, 276:20 (1973), 1343–1346 | MR | Zbl
[7] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[8] Gagliardo E., “Ulteriori proprietá di alcune classi di funzioni in piú variabilé”, Ricerch di Mat., 8 (1959), 24–51 | MR | Zbl
[9] Nirenberg L., “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115–162 | MR
[10] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl
[11] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | MR | Zbl
[12] Saks S., Teoriya integrala, IL, M., 1949