The asymptotic behavior as $N\to\infty$ of the trajectories of~$N$ point masses interacting in accordance with Newton's law of gravitation
Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 349-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

For systems of particles interacting according to Newton's law of gravitation, the asymptotics of their trajectories are found. It is shown that these asymptotics are connected with the characteristics of Vlasov's equation, describing a collision-free plasma. An estimate of the difference between the trajectories of point masses and the corresponding characteristics of Vlasov's equation is found. It is proved that for small hydrodynamic times the motion of point masses is near to the motion of mass points in a constant field of force, defined by the initial mass distribution (the law of free fall). This law of free fall continues to hold when the particles pass through distances substantially exceeding the initial mutual distances between them. Bibliography: 12 titles.
@article{IM2_1979_13_2_a7,
     author = {V. P. Maslov and P. P. Mosolov},
     title = {The asymptotic behavior as $N\to\infty$ of the trajectories of~$N$ point masses interacting in accordance with {Newton's} law of gravitation},
     journal = {Izvestiya. Mathematics },
     pages = {349--386},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a7/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - P. P. Mosolov
TI  - The asymptotic behavior as $N\to\infty$ of the trajectories of~$N$ point masses interacting in accordance with Newton's law of gravitation
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 349
EP  - 386
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a7/
LA  - en
ID  - IM2_1979_13_2_a7
ER  - 
%0 Journal Article
%A V. P. Maslov
%A P. P. Mosolov
%T The asymptotic behavior as $N\to\infty$ of the trajectories of~$N$ point masses interacting in accordance with Newton's law of gravitation
%J Izvestiya. Mathematics 
%D 1979
%P 349-386
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a7/
%G en
%F IM2_1979_13_2_a7
V. P. Maslov; P. P. Mosolov. The asymptotic behavior as $N\to\infty$ of the trajectories of~$N$ point masses interacting in accordance with Newton's law of gravitation. Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 349-386. http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a7/

[1] Gott J. R. III, Turner E. L., “Croups of galaxies. III. Mass-to-light ratios and crossing time”, Astrophys. J., 213:2 (1977), 309–322 | DOI

[2] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., L., 1946 | MR

[3] Klimontovich Yu. L., Kineticheskaya teoriya neidealnogo gaza i neidealnoi plazmy, Nauka, M., 1975 | MR

[4] Maslov V. P., Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR

[5] Belavkin V. P., Maslov V. P., “Metod uniformizatsii v teorii nelineinykh gamiltonovykh sistem tipa Vlasova i Khartri”, ZhTMF, 33:1 (1977), 17–31 | MR

[6] Chaljub-Simon A., “Existence globale d'une solution du probléme de Cauchy pour le systéme d'equations deriveés partielles de Liouville–Newton”, C. R. Acad. Sc. Paris, 276:20 (1973), 1343–1346 | MR | Zbl

[7] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[8] Gagliardo E., “Ulteriori proprietá di alcune classi di funzioni in piú variabilé”, Ricerch di Mat., 8 (1959), 24–51 | MR | Zbl

[9] Nirenberg L., “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115–162 | MR

[10] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[11] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | MR | Zbl

[12] Saks S., Teoriya integrala, IL, M., 1949