Conditional functions in the trajectory theory of dynamical systems
Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 221-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the notion of a conditional function of a trajectory partition of a dynamical system is introduced. The properties of conditional functions are to a large extent analogous to those of a Rohlin system of conditional measures, which permits us to apply conditional functions to the study of nonmeasurable partitions, for which systems of conditional measures do not exist. With the aid of conditional functions a simple condition for measurability of a discrete partition is given, and a system of invariants for simple partitions of type II is constructed – a system analogous to the Rohlin system of invariants of a measurable partition. Bibliography: 25 titles.
@article{IM2_1979_13_2_a1,
     author = {V. G. Vinokurov and N. N. Ganikhodzhaev},
     title = {Conditional functions in the trajectory theory of dynamical systems},
     journal = {Izvestiya. Mathematics },
     pages = {221--252},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a1/}
}
TY  - JOUR
AU  - V. G. Vinokurov
AU  - N. N. Ganikhodzhaev
TI  - Conditional functions in the trajectory theory of dynamical systems
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 221
EP  - 252
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a1/
LA  - en
ID  - IM2_1979_13_2_a1
ER  - 
%0 Journal Article
%A V. G. Vinokurov
%A N. N. Ganikhodzhaev
%T Conditional functions in the trajectory theory of dynamical systems
%J Izvestiya. Mathematics 
%D 1979
%P 221-252
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a1/
%G en
%F IM2_1979_13_2_a1
V. G. Vinokurov; N. N. Ganikhodzhaev. Conditional functions in the trajectory theory of dynamical systems. Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 221-252. http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a1/

[1] Belinskaya R. M., “Razbienie prostranstva Lebega na traektorii, opredelyaemye ergodicheskimi avtomorfizmami”, Funkts. analiz, 2:3 (1968), 9–16

[2] Vershik A. M., “Teorema o lakunarnom izomorfizme monotonnykh posledovatelnostei razbienii”, Funkts. analiz, 2:3 (1968), 17–21 | MR | Zbl

[3] Vershik A. M., “Ubyvayuschie posledovatelnosti izmerimykh razbienii i ikh prilozheniya”, Dokl. AN SSSR, 193:4 (1970), 748–751 | Zbl

[4] Vershik A. M., “Schetnye gruppy, blizkie k konechnym”, prilozhenie k knige: Grinlif F., Invariantnye srednie na topologicheskikh gruppakh, M., 1973, 112–135

[5] Vershik A. M., “Ustroistvo ruchnykh razbienii”, Uspekhi matem. nauk, 27:3 (1972), 195–196 | MR | Zbl

[6] Vershik A. M., “Neizmerimye razbieniya, traektornaya teoriya, algebry operatorov”, Dokl. AN SSSR, 199:5 (1971), 1004–1007 | Zbl

[7] Vershik A. M., Approksimatsiya v teorii mery, Avtoreferat doktorskoi dissertatsii, Leningrad, 1974

[8] Vinokurov V. G., Ganikhodzhaev N. N., “Ob odnom klasse ruchnykh razbienii”, Sluchainye protsessy i statisticheskie vyvody, vyp. 5, Fan, Tashkent, 1975, 29–35 | MR

[9] Vinokurov V. G., Ganikhodzhaev N. N., “O gomologicheskom invariante diskretnogo razbieniya”, Predelnye teoremy i matematicheskaya statistika, Fan, Tashkent, 1976, 23–31 | MR

[10] Ganikhodzhaev N. N., “Ob odnom klasse diskretnykh neizmerimykh razbienii”, Izv. AN UzSSR. Ser. fiz.-matem. nauk, 1975, no. 4, 17–24 | Zbl

[11] Golodets V. Ya., “Ob approksimativno konechnykh gruppakh preobrazovanii prostranstva s meroi”, Uspekhi matem. nauk, 24:4 (1969), 195–196 | MR | Zbl

[12] Kirillov A. A., “Dinamicheskie sistemy, faktory i predstavleniya grupp”, Uspekhi matem. nauk, 22:5 (1967), 67–80 | MR | Zbl

[13] Rokhlin V. A., “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 67:1 (1949), 107–150 | Zbl

[14] Rubshtein B. A., “O neodnorodnykh finitno-bernullievskikh posledovatelnostyakh izmerimykh razbienii”, Funkts. analiz, 10:1 (1976), 46–53 | MR

[15] Araki H., Woods E., “A classification of factors”, Publ. RIMS, Kyoto Univ., Ser. A, 5 (1968), 51–130 | DOI | MR

[16] Dany-Ngoc-Nghiem, “On the classification of dynamical systems”, Ann. Inst. H. Poincare, IX:4 (1973), 397–425 | MR

[17] Day H. A., “On groups of measure preserving transformations. I”, Amer. J. Math., 81 (1959), 119–159 | DOI | MR

[18] Day H. A., “On groups of measure preserving transformations. II”, Amer. J. Math., 85 (1963), 551–576 | DOI | MR

[19] Krieger W., “On non-singular transformations of a measure space. I”, Z. Wahr. verw. Geb., 11 (1969), 83–97 | DOI | MR | Zbl

[20] Krieger W., “On non-singular transformations of a measure space. II”, Z. Wahr. verw. Geb., 11 (1969), 98–119 | DOI | MR | Zbl

[21] Krieger W., “On the Araki–Woods asymptotic ration set and non-singular transformations of measure space”, Contributions to ergodic theory and probability lecture notes in mathematics, Lecture Notes in Math., 160, Berlin, 1970, 158–177 | MR | Zbl

[22] Krieger W., “On class hyperfinite factors that arise from nullrecurient Markov chains”, J. Functional analysis, 2:1 (1973), 27–42 | MR

[23] Krieger W., “On the infinite product construction on non-singular transformations of a measure space”, Invent. Math., 15 (1972), 144–163 | DOI | MR | Zbl

[24] Krieger W., “On constructing non-* isomorphic Hyperfinite factors of Type III”, J. Funct. Analysis, 6 (1970), 97–109 | DOI | MR | Zbl

[25] Hamachi T., Oka Y., Osikawa M., “A classification of ergodic non-singular transformations groups RM FS”, Kyushu University, Series A, 28:2 (1974), 113–133 | DOI | MR | Zbl