Conditional functions in the trajectory theory of dynamical systems
Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 221-252

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the notion of a conditional function of a trajectory partition of a dynamical system is introduced. The properties of conditional functions are to a large extent analogous to those of a Rohlin system of conditional measures, which permits us to apply conditional functions to the study of nonmeasurable partitions, for which systems of conditional measures do not exist. With the aid of conditional functions a simple condition for measurability of a discrete partition is given, and a system of invariants for simple partitions of type II is constructed – a system analogous to the Rohlin system of invariants of a measurable partition. Bibliography: 25 titles.
@article{IM2_1979_13_2_a1,
     author = {V. G. Vinokurov and N. N. Ganikhodzhaev},
     title = {Conditional functions in the trajectory theory of dynamical systems},
     journal = {Izvestiya. Mathematics },
     pages = {221--252},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a1/}
}
TY  - JOUR
AU  - V. G. Vinokurov
AU  - N. N. Ganikhodzhaev
TI  - Conditional functions in the trajectory theory of dynamical systems
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 221
EP  - 252
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a1/
LA  - en
ID  - IM2_1979_13_2_a1
ER  - 
%0 Journal Article
%A V. G. Vinokurov
%A N. N. Ganikhodzhaev
%T Conditional functions in the trajectory theory of dynamical systems
%J Izvestiya. Mathematics 
%D 1979
%P 221-252
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a1/
%G en
%F IM2_1979_13_2_a1
V. G. Vinokurov; N. N. Ganikhodzhaev. Conditional functions in the trajectory theory of dynamical systems. Izvestiya. Mathematics , Tome 13 (1979) no. 2, pp. 221-252. http://geodesic.mathdoc.fr/item/IM2_1979_13_2_a1/