Multiplications in cobordism theories with singularities, and Steenrod--tom Dieck operations
Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 89-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper obstructions to the commutativity and associativity of multiplications in cobordism theories with singularities are determined. Obstructions to the existence and commutativity of multiplications are expressed in terms of Steenrod-tom Dieck operations in cobordism. General theorems are applied to the cobordism theories $SO^*$, $U^*$, $SU^*$, $Sp^*$ and $Sc^*$ with singularities. Associativity of multiplication is proved in those cases where it exists, as well as the existence of a commutative and associative multiplication if the operation of division by 2 can be carried out in the ring of scalars of a theory with singularities. As an application of the main theorems, a uniqueness theorem for "generalized $K$-theories" is proved. Bibliography: 15 titles.
@article{IM2_1979_13_1_a5,
     author = {O. K. Mironov},
     title = {Multiplications in cobordism theories with singularities, and {Steenrod--tom} {Dieck} operations},
     journal = {Izvestiya. Mathematics },
     pages = {89--106},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a5/}
}
TY  - JOUR
AU  - O. K. Mironov
TI  - Multiplications in cobordism theories with singularities, and Steenrod--tom Dieck operations
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 89
EP  - 106
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a5/
LA  - en
ID  - IM2_1979_13_1_a5
ER  - 
%0 Journal Article
%A O. K. Mironov
%T Multiplications in cobordism theories with singularities, and Steenrod--tom Dieck operations
%J Izvestiya. Mathematics 
%D 1979
%P 89-106
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a5/
%G en
%F IM2_1979_13_1_a5
O. K. Mironov. Multiplications in cobordism theories with singularities, and Steenrod--tom Dieck operations. Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 89-106. http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a5/

[1] Bukhshtaber V. M., “Novye metody v teorii kobordizmov”, dobavlenie k knige: R. Stong, Zametki po teorii kobordizmov, Mir, M., 1973

[2] Bukhshtaber V. M., “Predstavlyayuschie prostranstva dlya $K$-funktora s koeffitsientami”, Dokl. AN SSSR, 186:3 (1969), 499–502 | Zbl

[3] Mironov O. K., “Suschestvovanie multiplikativnykh struktur v teoriyakh kobordizmov s osobennostyami”, Izv. AN SSSR. Ser. matem., 39 (1975), 1065–1092 | MR | Zbl

[4] Rudyak Yu. B., “Formalnye gruppy i bordizmy s osobennostyami”, Matem. sbornik, 96:4 (1975), 523–542 | MR | Zbl

[5] Stong R., Zametki po teorii kobordizmov, Mir, M., 1973 | MR | Zbl

[6] Adams J. F., Lectures on generalized cohomology, Springer, Berlin, 1969 | MR | Zbl

[7] Araki S., Toda H., “Multiplicative structures in $\operatorname{mod} q$ cohomology theories. I, II”, Osaka J. Math., 2:1 (1965), 71–115 ; 3:1 (1966), 81–120 | MR | Zbl | MR | Zbl

[8] Baas N., On bordism theories of manifolds with singularities, Aarhus Universitet Preprint, ser. No 31, 1970/71 | MR

[9] Dieck T., “Steenrod Operationen in Kobordism-Theorien”, Math. Zeit., 107 (1968), 380–401 | DOI | MR | Zbl

[10] Johnson D., Wilson W., “$BP$ operations and Morava's extraordinary $K$-theories”, Math. Zeit., 144:1 (1975), 155–175 | DOI | MR

[11] Morava J., Unitary cobordism and extraordinary $K$-theories, preprint

[12] Quillen D., Elementary proofs of some results of cobordism theory using Steenrod perations, preprint | MR

[13] Sullivan D., “The hauptvermutung for manifolds”, Bull. Amer. Math. Soc., 73 (1971), 598–600 | DOI | MR

[14] Kamata M., “On the differential $d_3^{p,0}$ of $U$-cobordism spectral sequence”, Osaka J. Math., 8 (1971), 233–241 | MR | Zbl

[15] Würgler U., “Structures multiplicatives dans certaines théories de cobordism à variétés avec singularities”, C. R. Acad. Sci. Paris Sér.A, 282 (1976), 1417–1419 | MR