Extremal properties of mappings onto surfaces with parallel slits
Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 1-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper an are a theorem is established for certain regular functions associated with multivalent mappings of a finitely connected domain onto a surface with parallel slits. Several consequences of this theorem generalize well-known results from the theory of univalent conformal mappings. The notion of the generalized span of a domain is introduced. It is then shown that it possesses certain properties completely analogous to the basic extremal properties of the span of a domain. Grötzsch's theorem concerning the range of the first coefficient of the regular part of the normalized Laurent expansion of a univalent function about a pole is extended to multivalent functions. Bibliography: 7 titles.
@article{IM2_1979_13_1_a0,
     author = {Yu. E. Alenitsyn},
     title = {Extremal properties of mappings onto surfaces with parallel slits},
     journal = {Izvestiya. Mathematics },
     pages = {1--8},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1979},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a0/}
}
TY  - JOUR
AU  - Yu. E. Alenitsyn
TI  - Extremal properties of mappings onto surfaces with parallel slits
JO  - Izvestiya. Mathematics 
PY  - 1979
SP  - 1
EP  - 8
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a0/
LA  - en
ID  - IM2_1979_13_1_a0
ER  - 
%0 Journal Article
%A Yu. E. Alenitsyn
%T Extremal properties of mappings onto surfaces with parallel slits
%J Izvestiya. Mathematics 
%D 1979
%P 1-8
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a0/
%G en
%F IM2_1979_13_1_a0
Yu. E. Alenitsyn. Extremal properties of mappings onto surfaces with parallel slits. Izvestiya. Mathematics , Tome 13 (1979) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/IM2_1979_13_1_a0/

[1] Alenitsyn Yu. E., “Konformnye otobrazheniya mnogosvyaznoi oblasti na mnogolistnye kanonicheskie poverkhnosti”, Izv. AN SSSR. Ser. matem., 28 (1964), 607–644 | MR | Zbl

[2] Alenitsyn Yu. E., “Teoremy ploschadei dlya funktsii, analiticheskikh v konechnosvyaznoi oblasti”, Izv. AN SSSR. Ser. matem., 37 (1973), 1132–1154 | Zbl

[3] Garabedian P. R., Schiffer M., “Identities in the theorie of conformal mapping”, Trans. Amer. Math. Soc., 65:2 (1949), 187–238 | DOI | MR | Zbl

[4] Schiffer M., “The kernel function of an orthonormal system”, Duke Math. J., 13 (1946), 520–540 | DOI | MR

[5] Schiffer M., “The span of multiply connected domains”, Duke Math. J., 10 (1943), 209–216 | DOI | MR | Zbl

[6] Nevanyainna R., Uniformizatsiya, IL, M., 1955

[7] Grötzsch H., “Über das Parallelschlitztheorem der konformen Abbildung schlichter Bereiche”, Ber. Verh. sachs. Akad. Wiss. Leipzig, Math.-phys. Kl, 84, 1932, 15–36 | Zbl