On the nonemptiness of classes in axiomatic set theory
Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 507-535.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems are proved on the consistency with $ZF$, for $n\geqslant2$, of each of the following three propositions: (1) there exists an $L$-minimal (in particular, nonconstructive) $a\subseteq\omega$ such that $V=L[a]$ and $\{a\}\in\Pi_n^1$, but every $b\subseteq\omega$ of class $\Sigma_n^1$ with constructive code is itself constructive; (2) there exist $a,b\subseteq\omega$ such that their $L$-degrees differ by a formula from $\Pi_n^1$, but not by formulas from $\Sigma_n^1$ with constants from $L$ ($X$ and $Y$ are said to differ by a formula $\sim[(\exists\,x\in X)\varphi(x)\equiv(\exists\,y\in Y)\varphi(y)])$; (3) there exists an infinite, but Dedekind finite, set $X\in\mathscr P(\omega)$ of class $\Pi_n^1$, whereas there are no such sets of class $\underline\Sigma_n^1$. The proof uses Cohen's forcing method. Bibliography: 17 titles.
@article{IM2_1978_12_3_a4,
     author = {V. G. Kanovei},
     title = {On the nonemptiness of classes in axiomatic set theory},
     journal = {Izvestiya. Mathematics },
     pages = {507--535},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a4/}
}
TY  - JOUR
AU  - V. G. Kanovei
TI  - On the nonemptiness of classes in axiomatic set theory
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 507
EP  - 535
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a4/
LA  - en
ID  - IM2_1978_12_3_a4
ER  - 
%0 Journal Article
%A V. G. Kanovei
%T On the nonemptiness of classes in axiomatic set theory
%J Izvestiya. Mathematics 
%D 1978
%P 507-535
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a4/
%G en
%F IM2_1978_12_3_a4
V. G. Kanovei. On the nonemptiness of classes in axiomatic set theory. Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 507-535. http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a4/

[1] Luzin N. N., Sobranie sochinenii, t. 2, AN SSSR, M., 1958 | MR

[2] Novikov P. S., “O neprotivorechivosti nekotorykh polozhenii deskriptivnoi teorii mnozhestv”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 38, 1951, 279–316 | MR

[3] Koen P., Teoriya mnozhestv i kontinuum-gipoteza, Mir, M., 1969 | MR

[4] Iekh T., Teoriya mnozhestv i metod forsinga, Mir, M., 1973 | MR

[5] Rodzhers X., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR

[6] Solovay R. M., “A model of set theory in which every set of reals is Lebesgue measurable”, Ann. Math., 92:1 (1970), 1–56 | DOI | MR | Zbl

[7] Jensen R. B., “Definable set of minimal degree”, Math. Logic and Found. of Set Theory, North-Holl., Amst., 1970, 122–128 | MR | Zbl

[8] Sacks G. E., “Forcing with perfect closed sets”, Proc. Symp. Pure Math., 13:1 (1971), 331–357 | MR

[9] Devlin K., Aspects of constructibility, Lectures Notes in Math., 354, 1973 | MR | Zbl

[10] Shoenfield J. R., “The problem of predicativity”, Essays on the Found. of Math., Jerusalem, 1961, 132–139 | MR

[11] Jensen R. B., Johnsbraten H., “A new construction of a nonconstructible $\Delta^1_3$ subset of $\omega$”, Fund. Math., 81:4 (1974), 279–290 | MR | Zbl

[12] Mansfield R., “Perfect subsets of definable sets of real numbers”, Pacific J. Math., 35:2 (1970), 451–457 | MR | Zbl

[13] Simpson S. G., “Choice schemata in second order arithmetic”, Notices Amer. Math. Soc., 147 (1973), A–499

[14] Kanovei V. G., “Opredelimost s pomoschyu stepenei konstruktivnosti”, Tretya Vsesoyuznaya konferentsiya po matematicheskoi logike, SO AN SSSR, Novosibirsk, 1974, 92–94

[15] Kanovei V. G., “Opredelimost s pomoschyu stepenei konstruktivnosti”, Issledovaniya po teorii mnozhestv i neklassicheskim logikam, Nauka, M., 1976, 5–95 | MR

[16] Kanovei V. G., “O nezavisimosti nekotorykh predlozhenii deskriptivnoi teorii mnozhestv i arifmetiki vtorogo poryadka”, Dokl. AN SSSR, 223:3 (1975), 552–554 | MR | Zbl

[17] Kanovei V. G., Nekotorye voprosy opredelimosti v arifmetike tretego poryadka i obobschenie teoremy Ensena o minimalnom $\Delta^1_3$-chisle, dep. v VINITI, No 839-75, 1975, 1–48