On the nonemptiness of classes in axiomatic set theory
Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 507-535

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems are proved on the consistency with $ZF$, for $n\geqslant2$, of each of the following three propositions: (1) there exists an $L$-minimal (in particular, nonconstructive) $a\subseteq\omega$ such that $V=L[a]$ and $\{a\}\in\Pi_n^1$, but every $b\subseteq\omega$ of class $\Sigma_n^1$ with constructive code is itself constructive; (2) there exist $a,b\subseteq\omega$ such that their $L$-degrees differ by a formula from $\Pi_n^1$, but not by formulas from $\Sigma_n^1$ with constants from $L$ ($X$ and $Y$ are said to differ by a formula $\sim[(\exists\,x\in X)\varphi(x)\equiv(\exists\,y\in Y)\varphi(y)])$; (3) there exists an infinite, but Dedekind finite, set $X\in\mathscr P(\omega)$ of class $\Pi_n^1$, whereas there are no such sets of class $\underline\Sigma_n^1$. The proof uses Cohen's forcing method. Bibliography: 17 titles.
@article{IM2_1978_12_3_a4,
     author = {V. G. Kanovei},
     title = {On the nonemptiness of classes in axiomatic set theory},
     journal = {Izvestiya. Mathematics },
     pages = {507--535},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a4/}
}
TY  - JOUR
AU  - V. G. Kanovei
TI  - On the nonemptiness of classes in axiomatic set theory
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 507
EP  - 535
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a4/
LA  - en
ID  - IM2_1978_12_3_a4
ER  - 
%0 Journal Article
%A V. G. Kanovei
%T On the nonemptiness of classes in axiomatic set theory
%J Izvestiya. Mathematics 
%D 1978
%P 507-535
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a4/
%G en
%F IM2_1978_12_3_a4
V. G. Kanovei. On the nonemptiness of classes in axiomatic set theory. Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 507-535. http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a4/