Fano 3-folds.~II
Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 469-506.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper Fano 3-folds of the principal series $V_{2g-2}$ in $\mathbf P^{g+1}$ are studied. A classification is given of trivial (i.e. containing a trigonal canonical curve) 3-folds of this kind. Among all Fano 3-folds of the principal series these are distinguished by the property that they are not the intersection of the quadrics containing them. It turns out that the genus $g$ of such 3-folds does not exceed 10. Fano 3-folds of genus one (i.e. with $\operatorname{Pic}V\simeq\mathbf Z$) containing a line are described. It is proved that they exist for $g\leqslant10$ and $g=12$. Their rationality for $g=7$ and $g\geqslant9$ is established by direct construction. Bibliography: 18 titles.
@article{IM2_1978_12_3_a3,
     author = {V. A. Iskovskikh},
     title = {Fano {3-folds.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {469--506},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a3/}
}
TY  - JOUR
AU  - V. A. Iskovskikh
TI  - Fano 3-folds.~II
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 469
EP  - 506
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a3/
LA  - en
ID  - IM2_1978_12_3_a3
ER  - 
%0 Journal Article
%A V. A. Iskovskikh
%T Fano 3-folds.~II
%J Izvestiya. Mathematics 
%D 1978
%P 469-506
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a3/
%G en
%F IM2_1978_12_3_a3
V. A. Iskovskikh. Fano 3-folds.~II. Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 469-506. http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a3/

[1] Beauville A., “Variétés de Prym et Jacobiennes Intermédiates”, Ann. scient. École norm. supér, ser. 4, 10:3 (1977), 309–399 | MR

[2] Bertini E., Geometria proiettiva degli iperpazi, 2. ed., Messina, Principato, 1923 | Zbl

[3] Enriques F., “Sulle irrationalita da cui puo farci dipendere la resoluzione d'un equazione algebrica $f(x,y,z)=0$ con funzione die due parametri”, Math. Ann., 49 (1897), 1–23 | DOI | MR | Zbl

[4] Fano G., “Sulle varietà algebriche a tre dimensioni a curve-sezioni canoniche”, Mem. R. Accad. d'Italia, 8 (1937), 14–49

[5] Fano G., “Su alcune varietà a tre dimensioni razionali e aventi curve-sezioni canoniche”, Comm. Math. Helvetici, 14 (1941–1942), 202–211 | DOI | MR | Zbl

[6] Fano G., “Nuove richerche sulle varietà algebriche a tre dimensioni a curve-sezioni canoniche”, Comm. Dont. Ac. Sci., 11 (1947), 635–720 | MR | Zbl

[7] Grothendieck A., “Technique de construction et théorémes d'existence en géométrie algébrique. IV. Les schémas de Hilbert”, Séminaire Bourbaki, vol. 13, No 221, 1960/1961

[8] Iskovskikh V. A., “Trëkhmernye mnogoobraziya Fano. I”, Izv. AN SSSR. Ser. matem., 41 (1977), 516–562 | MR | Zbl

[9] Iskovskikh V. A., “O mnogoobraziyakh Fano pervogo roda”, Uspekhi matem. nauk, 33:3 (1978), 171–172 | MR | Zbl

[10] Reid M., “Bogomolov's theorem $c^2_1\geqslant 4c_2$”, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, 623–642 | MR

[11] Roth L., “Sulle $V_3$ algebraiche su cui Taggiunzione si estingue”, Rend. Ace. Lincei, 8:9 (1950), 246–249 | MR

[12] Roth L., Algebraic threefold with special regard to problems of rationality, Springer, Berlin, Heidelberg, New York, 1955 | MR

[13] Saint-Donat B., “Projective models of $K$-3 Surfaces”, Amer. J. Math., 96:4 (1974), 602–639 | DOI | MR | Zbl

[14] Tennison B., “On the quartic treefold”, Proc. London Math. Soc., 29 (1974), 714–734 | DOI | MR | Zbl

[15] Tyurin A. N., “Pyat lektsii o trekhmernykh mnogoobraziyakh”, Uspekhi matem. nauk, 27:5(186) (1972), 3–50 | Zbl

[16] Tyurin A. N., “O peresechenii kvadrik”, Uspekhi matem. nauk, 30:6(186) (1975), 51–99 | MR | Zbl

[17] Semple J. G., Roth L., Introduction to algebraic geometry, Oxford, at the Clarendon Press, 1949 | MR | Zbl

[18] Shokurov V. V., “Teorema Nëtera–Enrikvesa o kanonicheskikh krivykh”, Matem. sb., 86(128) (1971), 367–408 | Zbl