Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$
Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 448-462.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a derivation is given of a generalized Selberg trace formula corresponding to the odd eigenfunctions of the Laplace–Beltrami operator in the space $L_2(\Gamma\setminus H)$, where the discrete group $\Gamma$ is $\Gamma=PSL(2,\mathbf Z)$ and $H$ is the upper halfplane (the Dirichlet problem on half of the fundamental domain). As an application a generalization is obtained of Minakshisundaram's formula: \begin{equation} \int_0^\infty e^{-t\lambda}\,d\alpha(\lambda)=\frac1t\cdot\frac1{24}+\frac{\ln t}{\sqrt t}\cdot\frac1{8\sqrt\pi}+\frac1{\sqrt t}\cdot\frac1{8\sqrt\pi}(\mathbf C-\ln2)+O_{t\to0,t>0} \end{equation} ($\alpha(\lambda)$ is the corresponding spectral density; $\mathbf C$ is Euler's constant) and also an asymptotic formula characterizing the irregularity of the distribution of the eigenvalues. Similar results are also obtained for all the eigenvalues of the discrete spectrum of the Laplace–Beltrami operator in the space $L_2(\Gamma\setminus H)$ when $\Gamma$ is the indicated group. Bibliography: 18 titles.
@article{IM2_1978_12_3_a1,
     author = {A. B. Venkov},
     title = {Selberg's trace formula for the {Hecke} operator generated by an involution, and the eigenvalues of the {Laplace--Beltrami} operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$},
     journal = {Izvestiya. Mathematics },
     pages = {448--462},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/}
}
TY  - JOUR
AU  - A. B. Venkov
TI  - Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 448
EP  - 462
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/
LA  - en
ID  - IM2_1978_12_3_a1
ER  - 
%0 Journal Article
%A A. B. Venkov
%T Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$
%J Izvestiya. Mathematics 
%D 1978
%P 448-462
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/
%G en
%F IM2_1978_12_3_a1
A. B. Venkov. Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$. Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 448-462. http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/

[1] Minakshisundaram S., “Eigenfunctions on Riemannian manifolds”, J. Indian Math. Soc., 17 (1953), 158–165 | MR

[2] Hejhal D. A., “The Selberg trace formula and the Riemann Zeta function”, Duke Math. J., 43:3 (1976), 441–482 | DOI | MR | Zbl

[3] Yamada T., “On the distribution of the norms of the hyperbolic transformations”, Osaka J. Math., 3 (1966), 29–37 | MR | Zbl

[4] Titchmarsh E. C., The Theory of the Riemann Zeta-Function, Oxford Univ. Press, 1951 | MR

[5] Karatsuba A. A., Osnovy analiticheskoi teorii, Nauka, M., 1975 | MR | Zbl

[6] Tanaka S., “Selberg's trace formula and spectrum”, Osaka J. Math., 3 (1966), 205–216 | MR | Zbl

[7] Cartier P., “Some numerical computations relating to automorphic functions”, Computers in number theory, Academic Press, 1971, 37–48

[8] Selberg A., “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc., 20 (1956), 47–87 | MR | Zbl

[9] Venkov A. B., Kalinin V. L., Faddeev L. D., “Nearifmeticheskii vyvod formuly sleda Selberga”, Zapiski nauchnykh seminarov LOMI im. V. A. Steklova AN SSSR, 37, 1973, 5–42 | MR | Zbl

[10] Kubota T., Elementary Theory of Eisenstein Series, Halsted Press, New York, 1973 | MR | Zbl

[11] Arthur J., “The Selberg trace formula for groups of $F$-rank one”, Ann. of Math., 100 (1974), 326–385 | DOI | MR

[12] Andrianov A. N., Fomenko O. M., “Raspredelenie norm giperbolicheskikh elementov modulyarnoi gruppy i chisla klassov neopredelennykh binarnykh kvadratichnykh form”, Dokl. AN SSSR, 196:4 (1971), 743–745 | MR | Zbl

[13] Venkov A. B., Elementarnaya teoriya chisel, GTTI, M., 1937

[14] Venkov A. B., “Razlozhenie po avtomorfnym sobstvennym funktsiyam operatora Laplasa–Beltrami v klassicheskikh simmetricheskikh prostranstvakh ranga odin i formula sleda Selberga”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, CXXV, 1973, 6–55 | MR

[15] Venkov A. B., “Razlozhenie po avtomorfnym sobstvennym funktsiyam operatora Laplasa i formula sleda Selberga v prostranstve $SO_0(n,1)/SO(n)$”, Dokl. AN SSSR, 200 (1971), 266–269 | MR

[16] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge University Press, 1927 | MR

[17] Gekke E., Lektsii po teorii algebraicheskikh chisel, GTTI, M., 1940

[18] Sprindzhuk V. G., “Diofantovy uravneniya i chisla klassov idealov”, Matem. zametki, 17:1 (1975), 161–168 | Zbl