Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$
Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 448-462

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a derivation is given of a generalized Selberg trace formula corresponding to the odd eigenfunctions of the Laplace–Beltrami operator in the space $L_2(\Gamma\setminus H)$, where the discrete group $\Gamma$ is $\Gamma=PSL(2,\mathbf Z)$ and $H$ is the upper halfplane (the Dirichlet problem on half of the fundamental domain). As an application a generalization is obtained of Minakshisundaram's formula: \begin{equation} \int_0^\infty e^{-t\lambda}\,d\alpha(\lambda)=\frac1t\cdot\frac1{24}+\frac{\ln t}{\sqrt t}\cdot\frac1{8\sqrt\pi}+\frac1{\sqrt t}\cdot\frac1{8\sqrt\pi}(\mathbf C-\ln2)+O_{t\to0,t>0} \end{equation} ($\alpha(\lambda)$ is the corresponding spectral density; $\mathbf C$ is Euler's constant) and also an asymptotic formula characterizing the irregularity of the distribution of the eigenvalues. Similar results are also obtained for all the eigenvalues of the discrete spectrum of the Laplace–Beltrami operator in the space $L_2(\Gamma\setminus H)$ when $\Gamma$ is the indicated group. Bibliography: 18 titles.
@article{IM2_1978_12_3_a1,
     author = {A. B. Venkov},
     title = {Selberg's trace formula for the {Hecke} operator generated by an involution, and the eigenvalues of the {Laplace--Beltrami} operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$},
     journal = {Izvestiya. Mathematics },
     pages = {448--462},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/}
}
TY  - JOUR
AU  - A. B. Venkov
TI  - Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 448
EP  - 462
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/
LA  - en
ID  - IM2_1978_12_3_a1
ER  - 
%0 Journal Article
%A A. B. Venkov
%T Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$
%J Izvestiya. Mathematics 
%D 1978
%P 448-462
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/
%G en
%F IM2_1978_12_3_a1
A. B. Venkov. Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$. Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 448-462. http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/