Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1978_12_3_a1, author = {A. B. Venkov}, title = {Selberg's trace formula for the {Hecke} operator generated by an involution, and the eigenvalues of the {Laplace--Beltrami} operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$}, journal = {Izvestiya. Mathematics }, pages = {448--462}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {1978}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/} }
TY - JOUR AU - A. B. Venkov TI - Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$ JO - Izvestiya. Mathematics PY - 1978 SP - 448 EP - 462 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/ LA - en ID - IM2_1978_12_3_a1 ER -
%0 Journal Article %A A. B. Venkov %T Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$ %J Izvestiya. Mathematics %D 1978 %P 448-462 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/ %G en %F IM2_1978_12_3_a1
A. B. Venkov. Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$. Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 448-462. http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/
[1] Minakshisundaram S., “Eigenfunctions on Riemannian manifolds”, J. Indian Math. Soc., 17 (1953), 158–165 | MR
[2] Hejhal D. A., “The Selberg trace formula and the Riemann Zeta function”, Duke Math. J., 43:3 (1976), 441–482 | DOI | MR | Zbl
[3] Yamada T., “On the distribution of the norms of the hyperbolic transformations”, Osaka J. Math., 3 (1966), 29–37 | MR | Zbl
[4] Titchmarsh E. C., The Theory of the Riemann Zeta-Function, Oxford Univ. Press, 1951 | MR
[5] Karatsuba A. A., Osnovy analiticheskoi teorii, Nauka, M., 1975 | MR | Zbl
[6] Tanaka S., “Selberg's trace formula and spectrum”, Osaka J. Math., 3 (1966), 205–216 | MR | Zbl
[7] Cartier P., “Some numerical computations relating to automorphic functions”, Computers in number theory, Academic Press, 1971, 37–48
[8] Selberg A., “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc., 20 (1956), 47–87 | MR | Zbl
[9] Venkov A. B., Kalinin V. L., Faddeev L. D., “Nearifmeticheskii vyvod formuly sleda Selberga”, Zapiski nauchnykh seminarov LOMI im. V. A. Steklova AN SSSR, 37, 1973, 5–42 | MR | Zbl
[10] Kubota T., Elementary Theory of Eisenstein Series, Halsted Press, New York, 1973 | MR | Zbl
[11] Arthur J., “The Selberg trace formula for groups of $F$-rank one”, Ann. of Math., 100 (1974), 326–385 | DOI | MR
[12] Andrianov A. N., Fomenko O. M., “Raspredelenie norm giperbolicheskikh elementov modulyarnoi gruppy i chisla klassov neopredelennykh binarnykh kvadratichnykh form”, Dokl. AN SSSR, 196:4 (1971), 743–745 | MR | Zbl
[13] Venkov A. B., Elementarnaya teoriya chisel, GTTI, M., 1937
[14] Venkov A. B., “Razlozhenie po avtomorfnym sobstvennym funktsiyam operatora Laplasa–Beltrami v klassicheskikh simmetricheskikh prostranstvakh ranga odin i formula sleda Selberga”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, CXXV, 1973, 6–55 | MR
[15] Venkov A. B., “Razlozhenie po avtomorfnym sobstvennym funktsiyam operatora Laplasa i formula sleda Selberga v prostranstve $SO_0(n,1)/SO(n)$”, Dokl. AN SSSR, 200 (1971), 266–269 | MR
[16] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge University Press, 1927 | MR
[17] Gekke E., Lektsii po teorii algebraicheskikh chisel, GTTI, M., 1940
[18] Sprindzhuk V. G., “Diofantovy uravneniya i chisla klassov idealov”, Matem. zametki, 17:1 (1975), 161–168 | Zbl