Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1978_12_3_a1, author = {A. B. Venkov}, title = {Selberg's trace formula for the {Hecke} operator generated by an involution, and the eigenvalues of the {Laplace--Beltrami} operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$}, journal = {Izvestiya. Mathematics }, pages = {448--462}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {1978}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/} }
TY - JOUR AU - A. B. Venkov TI - Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$ JO - Izvestiya. Mathematics PY - 1978 SP - 448 EP - 462 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/ LA - en ID - IM2_1978_12_3_a1 ER -
%0 Journal Article %A A. B. Venkov %T Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$ %J Izvestiya. Mathematics %D 1978 %P 448-462 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/ %G en %F IM2_1978_12_3_a1
A. B. Venkov. Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace--Beltrami operator on the fundamental domain of the modular group~$PSL(2,\mathbf Z)$. Izvestiya. Mathematics , Tome 12 (1978) no. 3, pp. 448-462. http://geodesic.mathdoc.fr/item/IM2_1978_12_3_a1/