On the dependence of properties of functions on their degree of approximation by polynomials
Izvestiya. Mathematics , Tome 12 (1978) no. 2, pp. 255-288
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f(x)$ be a bounded $2\pi$-periodic function with modulus of continuity $\omega(\delta,f)$; let $E_n(f)$ and $H_\alpha E_n(f)$ be the minimum deviations of $f$ from the trigonometric polynomials of order $\leqslant n$, in the uniform metric and the Hausdorff metric of order $\alpha$, respectively; let
$$
\sigma_n(f,\alpha)=H_\alpha E_0(f)+\dots+H_\alpha E_{n-1}(f).
$$
Then
\begin{gather*}
H_\alpha E_n(f)\leqslant E_n(f)\leqslant H_\alpha E_n(f)\exp\{(3+2\sqrt2\,)\alpha\sigma_n(f,\alpha)\},\\
\omega\left(\frac1n,f\right)\leqslant\frac{\exp\{(3+2\sqrt{2})\alpha{\sigma_n}(f,\alpha)\}-1}{n\alpha}.
\end{gather*}
If $H_\alpha E_n(f)\leqslant c/n\alpha$ as $n\to\infty$, then if $c\pi$ the function $f$ is continuous almost everywhere; if $c\pi/2$ it is continuous everywhere, and if $c1$ we have $f\in\operatorname{Lip}\gamma(c)$, $\gamma(c)>0$.
Approximation by algebraic polynomials is also considered, and some corollaries are given.
Bibliography: 13 titles.
@article{IM2_1978_12_2_a4,
author = {E. P. Dolzhenko and E. A. Sevast'yanov},
title = {On the dependence of properties of functions on their degree of approximation by polynomials},
journal = {Izvestiya. Mathematics },
pages = {255--288},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {1978},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a4/}
}
TY - JOUR AU - E. P. Dolzhenko AU - E. A. Sevast'yanov TI - On the dependence of properties of functions on their degree of approximation by polynomials JO - Izvestiya. Mathematics PY - 1978 SP - 255 EP - 288 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a4/ LA - en ID - IM2_1978_12_2_a4 ER -
%0 Journal Article %A E. P. Dolzhenko %A E. A. Sevast'yanov %T On the dependence of properties of functions on their degree of approximation by polynomials %J Izvestiya. Mathematics %D 1978 %P 255-288 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a4/ %G en %F IM2_1978_12_2_a4
E. P. Dolzhenko; E. A. Sevast'yanov. On the dependence of properties of functions on their degree of approximation by polynomials. Izvestiya. Mathematics , Tome 12 (1978) no. 2, pp. 255-288. http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a4/