On the dependence of properties of functions on their degree of approximation by polynomials
Izvestiya. Mathematics , Tome 12 (1978) no. 2, pp. 255-288

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(x)$ be a bounded $2\pi$-periodic function with modulus of continuity $\omega(\delta,f)$; let $E_n(f)$ and $H_\alpha E_n(f)$ be the minimum deviations of $f$ from the trigonometric polynomials of order $\leqslant n$, in the uniform metric and the Hausdorff metric of order $\alpha$, respectively; let $$ \sigma_n(f,\alpha)=H_\alpha E_0(f)+\dots+H_\alpha E_{n-1}(f). $$ Then \begin{gather*} H_\alpha E_n(f)\leqslant E_n(f)\leqslant H_\alpha E_n(f)\exp\{(3+2\sqrt2\,)\alpha\sigma_n(f,\alpha)\},\\ \omega\left(\frac1n,f\right)\leqslant\frac{\exp\{(3+2\sqrt{2})\alpha{\sigma_n}(f,\alpha)\}-1}{n\alpha}. \end{gather*} If $H_\alpha E_n(f)\leqslant c/n\alpha$ as $n\to\infty$, then if $c\pi$ the function $f$ is continuous almost everywhere; if $c\pi/2$ it is continuous everywhere, and if $c1$ we have $f\in\operatorname{Lip}\gamma(c)$, $\gamma(c)>0$. Approximation by algebraic polynomials is also considered, and some corollaries are given. Bibliography: 13 titles.
@article{IM2_1978_12_2_a4,
     author = {E. P. Dolzhenko and E. A. Sevast'yanov},
     title = {On the dependence of properties of functions on their degree of approximation by polynomials},
     journal = {Izvestiya. Mathematics },
     pages = {255--288},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a4/}
}
TY  - JOUR
AU  - E. P. Dolzhenko
AU  - E. A. Sevast'yanov
TI  - On the dependence of properties of functions on their degree of approximation by polynomials
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 255
EP  - 288
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a4/
LA  - en
ID  - IM2_1978_12_2_a4
ER  - 
%0 Journal Article
%A E. P. Dolzhenko
%A E. A. Sevast'yanov
%T On the dependence of properties of functions on their degree of approximation by polynomials
%J Izvestiya. Mathematics 
%D 1978
%P 255-288
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a4/
%G en
%F IM2_1978_12_2_a4
E. P. Dolzhenko; E. A. Sevast'yanov. On the dependence of properties of functions on their degree of approximation by polynomials. Izvestiya. Mathematics , Tome 12 (1978) no. 2, pp. 255-288. http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a4/