Projective metabelian groups and Lie algebras
Izvestiya. Mathematics , Tome 12 (1978) no. 2, pp. 213-223
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $A_n$ is the variety of all abelian groups of exponent dividing $n\geqslant0$, and $A_n=A$ is the variety of all abelian groups. In this paper it is proved that projective metabelian $A_nA$-groups of finite rank are free. Moreover, it is proved that projective metabelian $k[Y_1^{\pm1},\dots,Y_r^{\pm1},Z_1,\dots,Z_s]$-Lie algebras of finite rank, where $k$ is a principal ideal ring, are free.
Bibliography: 9 titles.
@article{IM2_1978_12_2_a1,
author = {V. A. Artamonov},
title = {Projective metabelian groups and {Lie} algebras},
journal = {Izvestiya. Mathematics },
pages = {213--223},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {1978},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a1/}
}
V. A. Artamonov. Projective metabelian groups and Lie algebras. Izvestiya. Mathematics , Tome 12 (1978) no. 2, pp. 213-223. http://geodesic.mathdoc.fr/item/IM2_1978_12_2_a1/