On the determination of the Sturm--Liouville operator from one and two spectra
Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 179-193
Voir la notice de l'article provenant de la source Math-Net.Ru
Let the sequences $\{\lambda_n\}_0^\infty$ and $\{\mu_n\}_0^\infty$ define the Sturm–Liouville problem
\begin{equation}
\tag{I}
\left.\begin{gathered}
-y''+\{\lambda-q(x)\}y=0\quad(0\leqslant x\leqslant\pi),\\
y'(0)-hy(0)=0,\quad y'(\pi)+Hy(\pi)=0,
\end{gathered}\right\}
\end{equation}
and, in addition, let the sequences $\{\widetilde\lambda_n\}_0^\infty=\{\lambda_n\}_0^\infty$ and $\{\widetilde\mu_n\}_0^\infty$, where $\widetilde\mu_n=\mu_n$ for $n>N\geqslant0$,
define a second Sturm–Liouville problem
\begin{equation}
\tag{II}
\left.\begin{gathered}
-y''+\{\lambda-\widetilde q(x)\}y=0,\\
y'(0)-\widetilde hy(0)=0,\quad y'(\pi)+\widetilde Hy(\pi)=0.
\end{gathered}\right\}
\end{equation} In this paper we show that the kernel $F(x,s)$ of the integral equation for the inverse problem, in which problem (II) is regarded as a perturbation of problem (I), has the form
$$
F(x,s)=\sum_{n=0}^N\psi(x,\widetilde\mu_n)\varphi(s,\widetilde\mu_n),
$$
in the triangle $0\leqslant s\leqslant x\leqslant\pi$, wherein $\psi(x,\lambda)$ and $\varphi(s,\lambda)$ are solutions of (I). In particular, we obtain a new proof of Hochstadt's theorem concerning the structure of the difference $\widetilde q(x)-q(x)$.
Bibliography: 5 titles.
@article{IM2_1978_12_1_a6,
author = {B. M. Levitan},
title = {On the determination of the {Sturm--Liouville} operator from one and two spectra},
journal = {Izvestiya. Mathematics },
pages = {179--193},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {1978},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a6/}
}
B. M. Levitan. On the determination of the Sturm--Liouville operator from one and two spectra. Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 179-193. http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a6/