On the determination of the Sturm--Liouville operator from one and two spectra
Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 179-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the sequences $\{\lambda_n\}_0^\infty$ and $\{\mu_n\}_0^\infty$ define the Sturm–Liouville problem \begin{equation} \tag{I} \left.\begin{gathered} -y''+\{\lambda-q(x)\}y=0\quad(0\leqslant x\leqslant\pi),\\ y'(0)-hy(0)=0,\quad y'(\pi)+Hy(\pi)=0, \end{gathered}\right\} \end{equation} and, in addition, let the sequences $\{\widetilde\lambda_n\}_0^\infty=\{\lambda_n\}_0^\infty$ and $\{\widetilde\mu_n\}_0^\infty$, where $\widetilde\mu_n=\mu_n$ for $n>N\geqslant0$, define a second Sturm–Liouville problem \begin{equation} \tag{II} \left.\begin{gathered} -y''+\{\lambda-\widetilde q(x)\}y=0,\\ y'(0)-\widetilde hy(0)=0,\quad y'(\pi)+\widetilde Hy(\pi)=0. \end{gathered}\right\} \end{equation} In this paper we show that the kernel $F(x,s)$ of the integral equation for the inverse problem, in which problem (II) is regarded as a perturbation of problem (I), has the form $$ F(x,s)=\sum_{n=0}^N\psi(x,\widetilde\mu_n)\varphi(s,\widetilde\mu_n), $$ in the triangle $0\leqslant s\leqslant x\leqslant\pi$, wherein $\psi(x,\lambda)$ and $\varphi(s,\lambda)$ are solutions of (I). In particular, we obtain a new proof of Hochstadt's theorem concerning the structure of the difference $\widetilde q(x)-q(x)$. Bibliography: 5 titles.
@article{IM2_1978_12_1_a6,
     author = {B. M. Levitan},
     title = {On the determination of the {Sturm--Liouville} operator from one and two spectra},
     journal = {Izvestiya. Mathematics },
     pages = {179--193},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a6/}
}
TY  - JOUR
AU  - B. M. Levitan
TI  - On the determination of the Sturm--Liouville operator from one and two spectra
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 179
EP  - 193
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a6/
LA  - en
ID  - IM2_1978_12_1_a6
ER  - 
%0 Journal Article
%A B. M. Levitan
%T On the determination of the Sturm--Liouville operator from one and two spectra
%J Izvestiya. Mathematics 
%D 1978
%P 179-193
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a6/
%G en
%F IM2_1978_12_1_a6
B. M. Levitan. On the determination of the Sturm--Liouville operator from one and two spectra. Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 179-193. http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a6/

[1] Borg G., “Eine Umkehrung der Sturm–Liouvillschen Eigenwertaufgabe”, Acta Math., 78:2 (1945), 1–96 | MR

[2] Levitan B. M., “Ob opredelenii operatora Shturma–Liuvillya po dvum spektram”, Izv. AN SSSR. Ser. matem., 28 (1964), 63–78 | MR | Zbl

[3] Hochstadt H., “The Inverse Sturm–Lioville Problem”, Comm. Pure and Appl. Math., 26 (1973), 715–729 | DOI | MR | Zbl

[4] Levinson N., “The inverse Sturm–Lioville problem”, Math. Tidsskr. B., 1949 (1949), 25–30 | MR

[5] Gelfand I. M., Levitan B. M., “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. matem., 15 (1951), 309–360 | MR | Zbl