Topological applications of the theory of two-valued formal groups
Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 125-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Pontryagin classes of real vector bundles are constructed in selfconjugate cobordism theory. In terms of these classes a construction of the two-valued formal group in cobordism is carried out and a topological interpretation of the main results of the algebraic theory of two-valued formal groups is given. The ring $Л^{\,*}(X)=\operatorname{Hom}_{A^U}(U^*(M\operatorname{Sp}),U_*(X))$ is computed for the basic nontrivial cases where $X=(\text{point})$ and $X=\mathbf CP(\infty)$. An effective description of the cobordism classes of Stong manifolds is given, and a number of problems on the cobordism classes associated with the universal Pontryagin classes are solved. The principal characteristics of the cobordism ring of selfconjugate manifolds are calculated, including the image of this ring in the cobordism ring of nonorientable manifolds. Bibliography: 29 titles.
@article{IM2_1978_12_1_a5,
     author = {V. M. Buchstaber},
     title = {Topological applications of the theory of two-valued formal groups},
     journal = {Izvestiya. Mathematics },
     pages = {125--177},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a5/}
}
TY  - JOUR
AU  - V. M. Buchstaber
TI  - Topological applications of the theory of two-valued formal groups
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 125
EP  - 177
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a5/
LA  - en
ID  - IM2_1978_12_1_a5
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%T Topological applications of the theory of two-valued formal groups
%J Izvestiya. Mathematics 
%D 1978
%P 125-177
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a5/
%G en
%F IM2_1978_12_1_a5
V. M. Buchstaber. Topological applications of the theory of two-valued formal groups. Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 125-177. http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a5/

[1] Adams J., Liulevicius A., “Buchstaber's work on two-valued formal groups”, Topology, 14:4 (1975), 291–296 | DOI | MR | Zbl

[2] Alexander J. C., “On $(U,S_p)$-bordism”, Amer. J. Math., 97:3 (1975), 617–625 | DOI | MR | Zbl

[3] Atya M., Lektsii po $K$-teorii, Mir, M., 1967 | MR

[4] Atya M., Khirtsebrukh F., “Vektornye rassloeniya i odnorodnye prostranstva”, Matematika, 1962, no. 2, 3–39

[5] Atiyah M., Hirzebruch F., “The Riemann–Roch theorem for analytic embeddings”, Topology, 1962, no. 1, 151–166 | DOI | MR | Zbl

[6] Becker J. C., “Characteristic classes and $K$-theory”, Lect. Notes Math., 428, 1974, 132–143 | MR | Zbl

[7] Becker J. C., Gottlieb D. H., “The transfer map and fiber bundles”, Topology, 14:1 (1975), 1–12 | DOI | MR | Zbl

[8] Bukhshtaber V. M., “Kharakter Chzhenya–Dolda v kobordizmakh. I”, Matem. sb., 83(125):4(12) (1970), 575–595 | MR | Zbl

[9] Bukhshtaber V. M., “Dvuznachnye formalnye gruppy. Nekotorye prilozheniya k kobordizmam”, Uspekhi matem. nauk, 26:3 (1971), 195–196 | MR | Zbl

[10] Bukhshtaber V. M., “Klassifikatsiya dvuznachnykh formalnykh grupp”, Uspekhi matem. nauk, 28:3 (1973), 173–174 | MR | Zbl

[11] Bukhshtaber V. M., “Dvuznachnye formalnye gruppy. Algebraicheskaya teoriya i prilozheniya k kobordizmam. I”, Izv. AN SSSR. Ser. matem., 39 (1975), 1044–1064 | Zbl

[12] Bukhshtaber V. M., “Dvuznachnye formalnye gruppy. Algebraicheskaya teoriya i prilozheniya k kobordizmam. II”, Izv. AN SSSR. Ser. matem., 40 (1976), 289–325 | Zbl

[13] Bukhshtaber V. M., “Dvuznachnye formalnye gruppy v apparate teorii kobordizmov”, Uspekhi matem. nauk, XXXII:2(194) (1977), 205–206

[14] Bukhshtaber V. M., Novikov S. P., “Formalnye gruppy, stepennye sistemy i operatory Adamsa”, Matem. sb., 84(126):1 (1971), 81–118 | MR | Zbl

[15] Green P. S., “A cohomology theory based upon selfconjugacies of complex vector bundles”, Bull. Amer. Math. Soc., 70 (1964), 522–524 | DOI | MR | Zbl

[16] Floyd E. E., “Stiefel-Whithey numbers of quaternionic and related manifolds”, Trans. Amer. Math. Soc., 155:1 (1974), 77–94 | DOI | MR

[17] Konner P., Floid E., Gladkie periodicheskie otobrazheniya. Dopolnenie, Mir, M., 1969

[18] Landweber P. S., “Cobordism operations and Hopf algebras”, Trans. Amer. Math. Soc., 129:1 (1964), 94–110 | DOI | MR

[19] Novikov S. P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. matem., 31 (1967), 885–951

[20] Novikov S. P., “Operatory Adamsa i nepodvizhnye tochki”, Izv. AN SSSR. Ser. matem., 32 (1968), 1245–1264

[21] Quillen D., “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75:6 (1964), 1293–1298 | DOI | MR

[22] Quillen D., “Elementary proofs of some results of cobordism theory using Steenrod operations”, Adv. Math., 7 (1971), 29–56 | DOI | MR | Zbl

[23] Ray N., “A note on symplectic bordism ring”, Bull. London Math. Soc., 3:2 (1971), 159–162 | DOI | MR | Zbl

[24] Ray N., “Indecomposables in Tors ${MS_p}^*$”, Topology, 10:4 (1971), 261–270 | DOI | MR | Zbl

[25] Ray N., “Realysing symplectic bordism classes”, Proc. Cambridge Phil. Soc., 71:2 (1972), 301–305 | DOI | MR | Zbl

[26] Segal D. M., “Divisibility conditions on characteristic numbers of stable symplectic manifolds”, Proc. Amer. Math. Soc., 27:2 (1971), 411–415 | DOI | MR | Zbl

[27] Segal D. M., “Halving the Milnor manifolds and some conjectures of Ray”, Proc Amer. Math. Soc., 39:3 (1973), 625–628 | DOI | MR | Zbl

[28] Stong R. E., “Some remarks on symplectic cobordism”, Ann. Math., 86:3 (1967), 425–433 | DOI | MR | Zbl

[29] Stong R., Zametki po teorii kobordizmov, Mir, M., 1973 | MR | Zbl