On the representation of minimal sets of currents on two-dimensional manifolds by geodesics
Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 103-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors have previously introduced a topological invariant of currents defined on a smooth connected orientable manifold $M$ of genus $n\geqslant2$, called the rotation homotopy class. With the help of this invariant necessary and sufficient conditions were established for the topological equivalence of minimal sets of currents containing a nonclosed recurrent trajectory. However, the question of classification (that is, the question of distinguishing all the equivalence classes and constructing standard currents in each class) remains open. The present article is devoted to the solution of the above problem, and standard minimal sets of currents are constructed in such a way that their trajectories are geodesics on $M$ in a metric of constant negative curvature. Bibliography: 15 titles.
@article{IM2_1978_12_1_a4,
     author = {S. Kh. Aranson and V. Z. Grines},
     title = {On the representation of minimal sets of currents on two-dimensional manifolds by geodesics},
     journal = {Izvestiya. Mathematics },
     pages = {103--124},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a4/}
}
TY  - JOUR
AU  - S. Kh. Aranson
AU  - V. Z. Grines
TI  - On the representation of minimal sets of currents on two-dimensional manifolds by geodesics
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 103
EP  - 124
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a4/
LA  - en
ID  - IM2_1978_12_1_a4
ER  - 
%0 Journal Article
%A S. Kh. Aranson
%A V. Z. Grines
%T On the representation of minimal sets of currents on two-dimensional manifolds by geodesics
%J Izvestiya. Mathematics 
%D 1978
%P 103-124
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a4/
%G en
%F IM2_1978_12_1_a4
S. Kh. Aranson; V. Z. Grines. On the representation of minimal sets of currents on two-dimensional manifolds by geodesics. Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 103-124. http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a4/

[1] Aranson S. X., Grines V. Z., “O nekotorykh invariantakh dinamicheskikh sistem na dvumernykh mnogoobraziyakh (neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti tranzitivnykh sistem)”, Matem. sb., 90(132):3 (1973), 372–402 | MR | Zbl

[2] Aranson S. X., Grines V. Z., “O topologicheskoi ekvivalentnosti minimalnykh mnozhestv dinamicheskikh sistem na dvumernykh mnogoobraziyakh”, Uspekhi matem. nauk, 28:4(172) (1973), 205–206 | MR | Zbl

[3] Aranson S. X., Grines V. Z., “O topologicheskikh invariantakh minimalnykh mnozhestv dinamicheskikh sistem na dvumernykh mnogoobraziyakh”, Uchenye zapiski GGU, 187 (1973), 3–28 | MR

[4] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, Gostekhizdat, M., L., 1947

[5] Markley N. G., “Homeomorphisms of the circle without periodic points”, J. Lond. Math. Soc., 20 (1970), 688–698 | DOI | MR | Zbl

[6] Aranson S. X., Zhuzhoma E. V., “O topologicheskoi klassifikatsii singulyarnykh dinamicheskikh sistem na tore”, Izv. Vuzov, Matematika, 1976, no. 5(168), 104–107 | MR | Zbl

[7] Nielsen J., “Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen”, Acta Math., 50 (1927), 189–358 | DOI | MR | Zbl

[8] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., L., 1949

[9] Maier A. G., “O traektoriyakh na orientiruemykh poverkhnostyakh”, Matem. sb., 12(54) (1943), 71–84

[10] Aranson S. X., “Ob otsutstvii nezamknutykh ustoichivykh po Puassonu polutraektorii i traektorii, dvoyakoasimptoticheskikh k dvoinomu predelnomu tsiklu u dinamicheskikh sistem pervoi stepeni negrubostk na orientiruemykh dvumernykh mnogoobraziyakh”, Matem. sb., 76(118):2 (1968), 214–230 | MR | Zbl

[11] Grines V. Z., “O topologicheskoi sopryazhennosti diffeomorfizmov dvumernogo mnogoobraziya na odnomernykh orientiruemykh bazisnykh mnozhestvakh. I”, Trudy Mosk. matem. ob-va, 32 (1975), 35–60 | MR | Zbl

[12] Reinhart B. L., “Algorithms for Jordan curves on compact surface”, Ann. Math., 75:2 (1962), 209–222 | DOI | MR | Zbl

[13] Koeble P., “Riemannische Manigfaltigkeiten und nichteuklidische Raumformen”, Fünfte Mittelung Sitzungsberichte der Preussischen Acad. Wiss., 1930, 304–364

[14] Hedlund G. A., “Two-dimensional manifolds and transitivity”, Ann. Math., 37:3 (1936), 534–542 | DOI | MR | Zbl

[15] Aranson S. Kh., “O nekotorykh arifmeticheskikh svoistvakh dinamicheskikh sistem na dvumernykh mnogoobraziyakh”, Dokl. AN SSSR, 222:2 (1975), 265–268 | MR | Zbl