The structure of eigenfunctions of one-dimensional unordered structures
Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 69-101

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work it is shown that all the eigenfunctions of the one-dimensional random Schröger operator $H=-d^2/dt^2+q(t,\omega)$, $t\in R^1$, with random potential $q(t,\omega)$, $\omega\in\Omega$, of Markov type decrease exponentially with probability 1. This confirms an old conjecture of N. F. Mott which has been discussed many times in the physics literature. Bibliography: 14 titles.
@article{IM2_1978_12_1_a3,
     author = {S. A. Molchanov},
     title = {The structure of eigenfunctions of one-dimensional unordered structures},
     journal = {Izvestiya. Mathematics },
     pages = {69--101},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1978},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a3/}
}
TY  - JOUR
AU  - S. A. Molchanov
TI  - The structure of eigenfunctions of one-dimensional unordered structures
JO  - Izvestiya. Mathematics 
PY  - 1978
SP  - 69
EP  - 101
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a3/
LA  - en
ID  - IM2_1978_12_1_a3
ER  - 
%0 Journal Article
%A S. A. Molchanov
%T The structure of eigenfunctions of one-dimensional unordered structures
%J Izvestiya. Mathematics 
%D 1978
%P 69-101
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a3/
%G en
%F IM2_1978_12_1_a3
S. A. Molchanov. The structure of eigenfunctions of one-dimensional unordered structures. Izvestiya. Mathematics , Tome 12 (1978) no. 1, pp. 69-101. http://geodesic.mathdoc.fr/item/IM2_1978_12_1_a3/