On the Dirichlet problem for a~pseudodifferential equation encountered in the theory of random processes
Izvestiya. Mathematics , Tome 11 (1977) no. 6, pp. 1285-1322
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem is considered of finding a function $u(t)$ satisfying the equation
\begin{equation}
\mathscr F^{-1}[\tilde k(x)\tilde u(x)](t)=f(t)\quad\text{for}\quad t\in\Omega,\qquad\tilde u(x)=\mathscr F[u(t)](x),
\end{equation}
and the conditions
\begin{equation}
u(t)\equiv0\quad\text{for}\quad t\notin\Omega,\qquad\int_{-\infty}^{+\infty}\tilde k(x)|\tilde u(x)|^2\,dx\infty,
\end{equation}
where $\tilde k(x)$ is a nonnegative measurable function and $\mathscr F$ is the Fourier operator. An existence and uniqueness theorem is proved under quite general assumptions concerning the spectral densities $\tilde k(x)$. Explicit formulas for the solution of problem (1), (2) are obtained in the case when $\Omega$ is an interval $(-T,T)$ and $\tilde k(x)=|x|^\alpha$, $\alpha>0$.
Bibliography: 17 titles.
@article{IM2_1977_11_6_a6,
author = {B. V. Pal'tsev},
title = {On the {Dirichlet} problem for a~pseudodifferential equation encountered in the theory of random processes},
journal = {Izvestiya. Mathematics },
pages = {1285--1322},
publisher = {mathdoc},
volume = {11},
number = {6},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a6/}
}
TY - JOUR AU - B. V. Pal'tsev TI - On the Dirichlet problem for a~pseudodifferential equation encountered in the theory of random processes JO - Izvestiya. Mathematics PY - 1977 SP - 1285 EP - 1322 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a6/ LA - en ID - IM2_1977_11_6_a6 ER -
B. V. Pal'tsev. On the Dirichlet problem for a~pseudodifferential equation encountered in the theory of random processes. Izvestiya. Mathematics , Tome 11 (1977) no. 6, pp. 1285-1322. http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a6/