Geodesic flows on closed Riemannian manifolds without focal points
Izvestiya. Mathematics , Tome 11 (1977) no. 6, pp. 1195-1228

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that a geodesic flow on a two-dimensional compact manifold of genus greater than 1 with Riemannian metric without focal points is isomorphic with a Bernoulli flow. This result generalizes to the multidimensional case. The proof is based on establishing some metric properties of flows with nonzero Ljapunov exponents (the $K$-property, etc.), and also the construction of horospheres and leaves on a very wide class of Riemannian manifolds, together with a study of some of their geometric properties. Bibliography: 24 titles.
@article{IM2_1977_11_6_a3,
     author = {Ya. B. Pesin},
     title = {Geodesic flows on closed {Riemannian} manifolds without focal points},
     journal = {Izvestiya. Mathematics },
     pages = {1195--1228},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a3/}
}
TY  - JOUR
AU  - Ya. B. Pesin
TI  - Geodesic flows on closed Riemannian manifolds without focal points
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 1195
EP  - 1228
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a3/
LA  - en
ID  - IM2_1977_11_6_a3
ER  - 
%0 Journal Article
%A Ya. B. Pesin
%T Geodesic flows on closed Riemannian manifolds without focal points
%J Izvestiya. Mathematics 
%D 1977
%P 1195-1228
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a3/
%G en
%F IM2_1977_11_6_a3
Ya. B. Pesin. Geodesic flows on closed Riemannian manifolds without focal points. Izvestiya. Mathematics , Tome 11 (1977) no. 6, pp. 1195-1228. http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a3/