The canonical module and anti-invariant elements
Izvestiya. Mathematics , Tome 11 (1977) no. 6, pp. 1151-1174

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a ring having canonical module; let $\mathfrak G$ be a finite group of automorphisms of this ring, and let $R$ be the subring of elements of $S$ invariant with respect to the action of $\mathfrak G$. We study the problem of existence and characterization of the canonical module of the ring $R$. In particular we apply our results to the problem of descent of the Gorenstein property of a ring. Bibliography: 19 titles.
@article{IM2_1977_11_6_a1,
     author = {S. S. Strogalov},
     title = {The canonical module and anti-invariant elements},
     journal = {Izvestiya. Mathematics },
     pages = {1151--1174},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a1/}
}
TY  - JOUR
AU  - S. S. Strogalov
TI  - The canonical module and anti-invariant elements
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 1151
EP  - 1174
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a1/
LA  - en
ID  - IM2_1977_11_6_a1
ER  - 
%0 Journal Article
%A S. S. Strogalov
%T The canonical module and anti-invariant elements
%J Izvestiya. Mathematics 
%D 1977
%P 1151-1174
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a1/
%G en
%F IM2_1977_11_6_a1
S. S. Strogalov. The canonical module and anti-invariant elements. Izvestiya. Mathematics , Tome 11 (1977) no. 6, pp. 1151-1174. http://geodesic.mathdoc.fr/item/IM2_1977_11_6_a1/