Discrete convolution operators on the quarter plane and their indices
Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 1072-1084.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma^2=\Gamma\times\Gamma$, where $\Gamma$ is the unit circle, and let $L_2^m(\Gamma^2)$ be the Hilbert space of vector-valued functions $\varphi=(\varphi_1,\dots,\varphi_m)$ whose components $\varphi_k(\zeta_1,\zeta_2)$ are complex-valued square integrable functions on $\Gamma^2$. The author considers the subspace $H_2^m(\Gamma^2)$ of functions in $L_2^m(\Gamma^2)$ having analytic continuations into the torus $\{(z_1,z_2):|z_k|1\}$; let $P$ be the projection of $L_2^m(\Gamma^2)$ onto $H_2^m(\Gamma^2)$. For a bounded measurable matrix-valued function $a(\zeta_1,\zeta_2)$ of order $m$ on $\Gamma^2$ having limits $a(\zeta\pm0,t)$ and $a(t,\zeta\pm0)$ ($\zeta\in\Gamma)$ uniform in $t\in\Gamma$, the bounded operator $T_a^2=PaP$ is defined in $H_2^m(\Gamma^2)$. In this paper a homotopy method is described for computing the index of Noetherian operators in the $C^*$-algebra generated by the operators $T_a^2$. In the case where $a(\zeta_1,\zeta_2)$ is continuous a simple formula for computing the index of $T_a^2$ is indicated. Bibliography: 24 titles.
@article{IM2_1977_11_5_a8,
     author = {R. V. Duduchava},
     title = {Discrete convolution operators on the quarter plane and their indices},
     journal = {Izvestiya. Mathematics },
     pages = {1072--1084},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a8/}
}
TY  - JOUR
AU  - R. V. Duduchava
TI  - Discrete convolution operators on the quarter plane and their indices
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 1072
EP  - 1084
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a8/
LA  - en
ID  - IM2_1977_11_5_a8
ER  - 
%0 Journal Article
%A R. V. Duduchava
%T Discrete convolution operators on the quarter plane and their indices
%J Izvestiya. Mathematics 
%D 1977
%P 1072-1084
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a8/
%G en
%F IM2_1977_11_5_a8
R. V. Duduchava. Discrete convolution operators on the quarter plane and their indices. Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 1072-1084. http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a8/

[1] Osher S., “Diskrete potential theory and Töplitz operators on the quarter plane, I”, Indiana University Mathem. J., 24:9 (1975), 887–896 | DOI | MR | Zbl

[2] Komech A. I., “Ellipticheskie kraevye zadachi na mnogoobraziyakh s kusochno-gladkoi granitsei”, Matem. sb., 92:1 (1973), 89–134 | Zbl

[3] Malyshev V. A., Sluchainye bluzhdaniya, uravneniya Vinera–Khopfa v chetverti ploskosti avtomorfizmy Galua, MGU, M., 1970 | MR

[4] Malyshev V. A., “Uravneniya Vinera–Khopfa v chetverti ploskosti, diskretnye gruppy i avtomorfnye funktsii”, Matem. sb., 84(126):4 (1971), 499–525 | MR | Zbl

[5] Osher S., “On certain Töplitz operators in two variables”, Pacific J. Mathem., 34:1 (1970), 123–129 | MR | Zbl

[6] Douglas R. G., “On the invertibility of a class of Töplitz operators on the quarter plane”, Indiana University Mathem. J., 21:11 (1972), 1031–1035 | DOI | MR | Zbl

[7] Simonenko I. B., “Ob operatorakh mnogomernykh diskretnykh svertok”, Matemat. issledov., 3, no. 1, Kishinev, 1968, 108–112 | MR

[8] Duglas R. D., Khouv R., “O $C^*$-algebrakh tëplitsevykh operatorov na kvadrante”, Matematika, 17:5 (1973), 3–16 | MR

[9] Strang G., “Töplitz operators in a quarter plane”, Bulletin AMS, 76:6 (1970), 1303–1307 | DOI | MR | Zbl

[10] Duduchava R. V., “O bisingulyarnykh integralnykh operatorakh i operatorakh svertki na kvadrante”, Dokl. AN SSSR, 221:2 (1975), 279–282 | MR | Zbl

[11] Duduchava R. V., “Integralnye operatory svertki na kvadrante s razryvnymi simvolami”, Izv. AN SSSR. Ser. matem., 40 (1976), 388–412 | Zbl

[12] Coburn L. A., Douglas R. G., Singer I. M., “An index theorem for Wiener–Hopf operators on the discrete quarter plane”, J. Differential Geometry, 6:4 (1972), 587–593 | MR | Zbl

[13] Goldenshtein L. S., “Priznaki odnostoronnei obratimosti funktsii ot neskolkikh izometricheskikh operatorov i ikh prilozheniya”, Dokl. AN SSSR, 155:1 (1964), 28–31

[14] Duduchava R. V., “O mnogomernykh uravneniyakh v svertkakh, sostavlennykh iz koeffitsientov Fure razryvnykh funktsii”, Soobsch. AN Gruz.SSR, 74:2 (1974), 277–280 | Zbl

[15] Fedosov B. V., “Neposredstvennoe dokazatelstvo formuly dlya indeksa ellipticheskoi sistemy v evklidovom prostranstve”, Funkts. analiz i ego prilozh., 4:4 (1970), 83–84 | MR | Zbl

[16] Gokhberg I. Ts., Krupnik N. Ya., “Ob algebre, porozhdennoi tëplitsevymi matritsami”, Funkts. analiz i ego prilozh., 3:2 (1969), 46–56 | MR | Zbl

[17] Khu Sy-Tszyan, Teoriya gomotopii, Mir, M., 1964

[18] Atya M., Lektsii po $K$-teorii, Mir, M., 1967 | MR

[19] Zaidenberg M. G., Krein S. G., Kuchment P. A., Pankov A. A., “Banakhovy rassloeniya i lineinye operatory”, Uspekhi matem. nauk, 30:5 (1975), 101–157 | MR | Zbl

[20] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[21] Budyanu M. S., Gokhberg I. Ts., “Obschie teoremy o faktorizatsii matrits-funktsii. II: Nekotorye priznaki i ikh sledstviya”, Matem. issledov., 3, no. 3, Kishinëv, 1968, 3–18

[22] Shubin M. A., “Faktorizatsiya matrits, zavisyaschikh ot parametra, i ellipticheskie uravneniya v prostranstve”, Matem. sb., 85:1 (1971), 65–84 | Zbl

[23] Stinespring W. R., “A sufficient condition for an integral operator to have a trace”, J. Reine und Angew. Mathem., 200:3,4 (1958), 200–207 | MR | Zbl

[24] Pilidi V. S., “Vychislenie indeksa bisingulyarnogo operatora”, Funkts. analiz i ego prilozh., 7:4 (1973), 93–94 | MR | Zbl