On the embedding problem with a~non-Abelian kernel
Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 991-1000.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper necessary and sufficient conditions are found for the solvability of the embedding problem with a non-Abelian kernel for which the second term of the $p$-central series is trivial. Bibliography: 6 titles.
@article{IM2_1977_11_5_a3,
     author = {A. S. Merkur'ev},
     title = {On the embedding problem with {a~non-Abelian} kernel},
     journal = {Izvestiya. Mathematics },
     pages = {991--1000},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a3/}
}
TY  - JOUR
AU  - A. S. Merkur'ev
TI  - On the embedding problem with a~non-Abelian kernel
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 991
EP  - 1000
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a3/
LA  - en
ID  - IM2_1977_11_5_a3
ER  - 
%0 Journal Article
%A A. S. Merkur'ev
%T On the embedding problem with a~non-Abelian kernel
%J Izvestiya. Mathematics 
%D 1977
%P 991-1000
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a3/
%G en
%F IM2_1977_11_5_a3
A. S. Merkur'ev. On the embedding problem with a~non-Abelian kernel. Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 991-1000. http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a3/

[1] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972 | MR

[2] Kassels D., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969 | MR

[3] Delone B. N., Faddeev D. K., “Issledovanie po geometrii teorii Galua”, Matem. sb., 15(57):2 (1944), 243–284

[4] Demushkin S. P., Shafarevich I. R., “Zadacha pogruzheniya dlya lokalnykh polei”, Izv. AN SSSR. Ser. matem., 23 (1959), 823–840 | Zbl

[5] Yakovlev A. V., “Zadacha pogruzheniya polei”, Izv. AN SSSR. Ser. matem., 28 (1964), 645–660 | Zbl

[6] Brauer R., “Über die Konstruktion der Schiefkörper, die von endlichem Rang in Bezug auf ein gegebenes Zentrum sind”, J. F. die Reine und Angew. Mathem., 168:1 (1932), 44–64 | MR | Zbl