Degenerations of $K3$ surfaces and Enriques surfaces
Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 957-989.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study good (semistable) degenerations of $K3$ surfaces ($m=1$) and Enriques surfaces ($m=2$). We obtain a classification of such degenerations under the condition that the $m$-canonical class is trivial. We show that for each good degeneration there exists a modification satisfying this condition. Bibliography: 10 titles.
@article{IM2_1977_11_5_a2,
     author = {Vik. S. Kulikov},
     title = {Degenerations of $K3$ surfaces and {Enriques} surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {957--989},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a2/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Degenerations of $K3$ surfaces and Enriques surfaces
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 957
EP  - 989
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a2/
LA  - en
ID  - IM2_1977_11_5_a2
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Degenerations of $K3$ surfaces and Enriques surfaces
%J Izvestiya. Mathematics 
%D 1977
%P 957-989
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a2/
%G en
%F IM2_1977_11_5_a2
Vik. S. Kulikov. Degenerations of $K3$ surfaces and Enriques surfaces. Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 957-989. http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a2/

[1] Algebraicheskie poverkhnosti, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 75, Nauka, 1965 | MR | Zbl

[2] Deligne P., “Théorie de Hodge, II, III”, Publ. Math. IHES, 1971, no. 40, 5–58 ; 1974, no. 44, 5–77 | MR | MR | Zbl

[3] Griffiths P., Schtnid W., “Recent development in Hodge theory: a discussion of techniquesand results”, Proceedings of the International Colloquium on Discrete Subgroups of Lie Groups, Oxford University Press, Bombay, 1973

[4] Kempf G., Knudsen F., Mumford D., Saint-Donat B., Toroidal embeddings, Lecture Notes in Math., 339, Springer-Verlag, 1973 | MR | Zbl

[5] Kodaira K., “O kompaktnykh analiticheskikh poverkhnostyakh”, Matematika, 6:6 (1962), 3–17

[6] Kulikov Vik. S., “Epimorfnost otobrazheniya periodov dlya poverkhnostei tipa KZU”, Uspekhi matem. nauk, 32:4 (1977), 257–258 | MR | Zbl

[7] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971

[8] Nokano S., “On the inverse of monoidal transformation”, Publ. RIMS, 6:3 (1971), 483–502, Kyoto Univ. | DOI | MR

[9] Steembrink J., “Limits of Hodge structures”, Inv. Math., 31 (1976), 229–257 | DOI | MR

[10] Khironaka X., “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polyami kharakteristiki nul”, Matematika, 9:6 (1965), 2–70