Degenerations of $K3$ surfaces and Enriques surfaces
Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 957-989
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study good (semistable) degenerations of $K3$ surfaces ($m=1$) and Enriques surfaces ($m=2$). We obtain a classification of such degenerations under the condition that the $m$-canonical class is trivial. We show that for each good degeneration there exists a modification satisfying this condition.
Bibliography: 10 titles.
@article{IM2_1977_11_5_a2,
author = {Vik. S. Kulikov},
title = {Degenerations of $K3$ surfaces and {Enriques} surfaces},
journal = {Izvestiya. Mathematics },
pages = {957--989},
publisher = {mathdoc},
volume = {11},
number = {5},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a2/}
}
Vik. S. Kulikov. Degenerations of $K3$ surfaces and Enriques surfaces. Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 957-989. http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a2/