Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1977_11_5_a0, author = {S. K. Sobolev}, title = {On finite-dimensional superintuitionistic logics}, journal = {Izvestiya. Mathematics }, pages = {909--935}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {1977}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a0/} }
S. K. Sobolev. On finite-dimensional superintuitionistic logics. Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 909-935. http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a0/
[1] Gerchiu V. Ya., “O finitnoi approksimiruemosti superintuitsionistskikh logik”, Matem. issledovaniya, 7, no. 1, Kishinev, 1972, 186–192 | Zbl
[2] Kuznetsov A. V., Gerchiu V. Ya., “O superintuitsionistskikh logikakh i finitnoi approksimiruemosti”, Dokl. AN SSSR, 195:5 (1970), 1029–1032 | Zbl
[3] Raseva E., Sikorskii R., Matematika metamatematiki, Nauka, M., 1972 | MR
[4] Sobolev S. K., “Problemy razreshimosti i finitnoi approksimiruemosti ploskikh superintuitsionistskikh logik”, VII Vsesoyuznyi simpozium po logike i metodologii nauki, Kiev, 1976, 143–145
[5] Buchi J. R., Siefkes D., “The monadic second order theory of all countable ordinals”, Lecture Notes in Mathematics, 328, 1973 | MR
[6] Dummett M. A., “A propositional calculus with a denumerable matrix”, J. Symb. Logic, 24:2 (1959), 97–106 | DOI | MR | Zbl
[7] Fine K., “Logic containing $S4$ without the finite model property”, Lecture Notes in Mathematics, 255, 1972, 98–102 | MR | Zbl
[8] Fine K., “Logics containing $K4$, I”, J. Symb. Logic, 39:1 (1974), 31–42 | DOI | MR | Zbl
[9] Kripke S. A., “Semantical analysis of intuitionistic logic, I”, Formal systems and recursive functions, Amsterdam, 1965, 92–130 | MR | Zbl
[10] Thomas I., “Finite limitations of Dummett's $LC$”, Notre Dame J. Formal Logic, 3 (1962), 170–174 | DOI | MR | Zbl