On finite-dimensional superintuitionistic logics
Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 909-935.

Voir la notice de l'article provenant de la source Math-Net.Ru

A pseudoboolean algebra $\mathfrak M$ is called $n$-dimensional if the lattice $(Z_2)^{n+1}$ is not embeddable in $\mathfrak M$ as a lattice, where $Z_2$ is the two-element lattice. A superintuitionistic logic is said to be $n$-dimensional if the formula $E_n(x_1,\dots,x_n)\leftrightharpoons\bigvee_{i=1}^{n+1}(x_i=\bigvee_{j\ne i}x_j)$ belongs to it. A logic is $n$-dimensional if and only if it is approximable by $n$-dimensional algebras. All finite-dimensional logics are complete relative to Kripke semantics. An example is given of a formula that generates a logic not approximable by finite-dimensional algebras. It is proved that for every $n$, every finitely axiomatizable $n$-dimensional logic containing the formula $H(x,y)\leftrightharpoons(((x\to y)\to x)\to x)\vee (((y\to x)\to y)\to y)$ is decidable (already for $n=2$ there exist among such logics non-finitely-approximable ones). The proof uses the theory of finite automata on $\omega$-sequences. Bibliography: 10 titles.
@article{IM2_1977_11_5_a0,
     author = {S. K. Sobolev},
     title = {On finite-dimensional superintuitionistic logics},
     journal = {Izvestiya. Mathematics },
     pages = {909--935},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a0/}
}
TY  - JOUR
AU  - S. K. Sobolev
TI  - On finite-dimensional superintuitionistic logics
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 909
EP  - 935
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a0/
LA  - en
ID  - IM2_1977_11_5_a0
ER  - 
%0 Journal Article
%A S. K. Sobolev
%T On finite-dimensional superintuitionistic logics
%J Izvestiya. Mathematics 
%D 1977
%P 909-935
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a0/
%G en
%F IM2_1977_11_5_a0
S. K. Sobolev. On finite-dimensional superintuitionistic logics. Izvestiya. Mathematics , Tome 11 (1977) no. 5, pp. 909-935. http://geodesic.mathdoc.fr/item/IM2_1977_11_5_a0/

[1] Gerchiu V. Ya., “O finitnoi approksimiruemosti superintuitsionistskikh logik”, Matem. issledovaniya, 7, no. 1, Kishinev, 1972, 186–192 | Zbl

[2] Kuznetsov A. V., Gerchiu V. Ya., “O superintuitsionistskikh logikakh i finitnoi approksimiruemosti”, Dokl. AN SSSR, 195:5 (1970), 1029–1032 | Zbl

[3] Raseva E., Sikorskii R., Matematika metamatematiki, Nauka, M., 1972 | MR

[4] Sobolev S. K., “Problemy razreshimosti i finitnoi approksimiruemosti ploskikh superintuitsionistskikh logik”, VII Vsesoyuznyi simpozium po logike i metodologii nauki, Kiev, 1976, 143–145

[5] Buchi J. R., Siefkes D., “The monadic second order theory of all countable ordinals”, Lecture Notes in Mathematics, 328, 1973 | MR

[6] Dummett M. A., “A propositional calculus with a denumerable matrix”, J. Symb. Logic, 24:2 (1959), 97–106 | DOI | MR | Zbl

[7] Fine K., “Logic containing $S4$ without the finite model property”, Lecture Notes in Mathematics, 255, 1972, 98–102 | MR | Zbl

[8] Fine K., “Logics containing $K4$, I”, J. Symb. Logic, 39:1 (1974), 31–42 | DOI | MR | Zbl

[9] Kripke S. A., “Semantical analysis of intuitionistic logic, I”, Formal systems and recursive functions, Amsterdam, 1965, 92–130 | MR | Zbl

[10] Thomas I., “Finite limitations of Dummett's $LC$”, Notre Dame J. Formal Logic, 3 (1962), 170–174 | DOI | MR | Zbl