On $(H,k)$-summability of multiple trigonometric Fourier series
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 889-908
Voir la notice de l'article provenant de la source Math-Net.Ru
A theorem is proved from which, in particular, it follows that if $f\in L(\ln^+L)^{N-1}$ on $T^N\equiv[-\pi,\pi]^N$, then the multiple trigonometric Fourier series of $f$ and all conjugate series are $(H,k)$-summable almost everywhere on $T^N$ for every $k>0$.
In the case where $f\in L(\ln^+L)^{N+1}$ this result was obtained by Marcinkiewicz (Collected papers, PWN, Warsaw, 1964).
That it is unimprovable, in a certain sense, follows from a result of Saks (On the strong derivatives of functions of intervals, Fund. Math. 25 (1935), 235–252).
Bibliography: 15 titles.
@article{IM2_1977_11_4_a9,
author = {L. D. Gogoladze},
title = {On $(H,k)$-summability of multiple trigonometric {Fourier} series},
journal = {Izvestiya. Mathematics },
pages = {889--908},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a9/}
}
L. D. Gogoladze. On $(H,k)$-summability of multiple trigonometric Fourier series. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 889-908. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a9/