On $(H,k)$-summability of multiple trigonometric Fourier series
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 889-908

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is proved from which, in particular, it follows that if $f\in L(\ln^+L)^{N-1}$ on $T^N\equiv[-\pi,\pi]^N$, then the multiple trigonometric Fourier series of $f$ and all conjugate series are $(H,k)$-summable almost everywhere on $T^N$ for every $k>0$. In the case where $f\in L(\ln^+L)^{N+1}$ this result was obtained by Marcinkiewicz (Collected papers, PWN, Warsaw, 1964). That it is unimprovable, in a certain sense, follows from a result of Saks (On the strong derivatives of functions of intervals, Fund. Math. 25 (1935), 235–252). Bibliography: 15 titles.
@article{IM2_1977_11_4_a9,
     author = {L. D. Gogoladze},
     title = {On $(H,k)$-summability of multiple trigonometric {Fourier} series},
     journal = {Izvestiya. Mathematics },
     pages = {889--908},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a9/}
}
TY  - JOUR
AU  - L. D. Gogoladze
TI  - On $(H,k)$-summability of multiple trigonometric Fourier series
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 889
EP  - 908
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a9/
LA  - en
ID  - IM2_1977_11_4_a9
ER  - 
%0 Journal Article
%A L. D. Gogoladze
%T On $(H,k)$-summability of multiple trigonometric Fourier series
%J Izvestiya. Mathematics 
%D 1977
%P 889-908
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a9/
%G en
%F IM2_1977_11_4_a9
L. D. Gogoladze. On $(H,k)$-summability of multiple trigonometric Fourier series. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 889-908. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a9/