The frequency theorem for continuous one-parameter semigroups
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 849-864
Voir la notice de l'article provenant de la source Math-Net.Ru
The following is proved under certain, not very restrictive, assumptions. For the existence of a bounded linear operator $H=H^*$ such that the quadratic form
$\operatorname{Re}(Ax+bu,Hx)+F(x,u)$ is positive definite on $X\times U$, it is necessary and sufficient that the form $F[(i\omega I-A)^{-1}bu,u]$ $\forall\omega\in R^1$ be positive definite, where $A$ is the infinitesimal generating operator of a strongly continuous semigroup in a Hilbert space $X$, $b$ is a bounded linear operator acting from a Hilbert space $U$ into $X$, and $F(x,u)$ is a quadratic form on $X$. Moreover, there exist bounded linear operators $H_0,h$, and $\varkappa$ such that the representation $\operatorname{Re}(Ax+bu,Hx)+F(x,u)=[\varkappa u-hx]^2$ holds. A similar assertion is proved in the “degenerate” case.
Bibliography: 30 titles.
@article{IM2_1977_11_4_a7,
author = {A. L. Likhtarnikov and V. A. Yakubovich},
title = {The frequency theorem for continuous one-parameter semigroups},
journal = {Izvestiya. Mathematics },
pages = {849--864},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a7/}
}
A. L. Likhtarnikov; V. A. Yakubovich. The frequency theorem for continuous one-parameter semigroups. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 849-864. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a7/