The frequency theorem for continuous one-parameter semigroups
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 849-864.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following is proved under certain, not very restrictive, assumptions. For the existence of a bounded linear operator $H=H^*$ such that the quadratic form $\operatorname{Re}(Ax+bu,Hx)+F(x,u)$ is positive definite on $X\times U$, it is necessary and sufficient that the form $F[(i\omega I-A)^{-1}bu,u]$ $\forall\omega\in R^1$ be positive definite, where $A$ is the infinitesimal generating operator of a strongly continuous semigroup in a Hilbert space $X$, $b$ is a bounded linear operator acting from a Hilbert space $U$ into $X$, and $F(x,u)$ is a quadratic form on $X$. Moreover, there exist bounded linear operators $H_0,h$, and $\varkappa$ such that the representation $\operatorname{Re}(Ax+bu,Hx)+F(x,u)=[\varkappa u-hx]^2$ holds. A similar assertion is proved in the “degenerate” case. Bibliography: 30 titles.
@article{IM2_1977_11_4_a7,
     author = {A. L. Likhtarnikov and V. A. Yakubovich},
     title = {The frequency theorem for continuous one-parameter semigroups},
     journal = {Izvestiya. Mathematics },
     pages = {849--864},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a7/}
}
TY  - JOUR
AU  - A. L. Likhtarnikov
AU  - V. A. Yakubovich
TI  - The frequency theorem for continuous one-parameter semigroups
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 849
EP  - 864
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a7/
LA  - en
ID  - IM2_1977_11_4_a7
ER  - 
%0 Journal Article
%A A. L. Likhtarnikov
%A V. A. Yakubovich
%T The frequency theorem for continuous one-parameter semigroups
%J Izvestiya. Mathematics 
%D 1977
%P 849-864
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a7/
%G en
%F IM2_1977_11_4_a7
A. L. Likhtarnikov; V. A. Yakubovich. The frequency theorem for continuous one-parameter semigroups. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 849-864. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a7/

[1] Yakubovich V. A., “Reshenie nekotorykh matrichnykh neravenstv, vstrechayuschikhsya v teorii avtomaticheskogo regulirovaniya”, Dokl. AN SSSR, 143:6 (1962), 1304–1307 | Zbl

[2] Kalman R. E., “Liapunov functions for the problem of Lur'e in automatic control”, Proc. Nat. Acad. Sci. USA, 49, 1963, 319–361 | MR

[3] Popov V. M., Giperustoichivost avtomaticheskikh sistem, Nauka, M., 1970 | MR

[4] Yakubovich V. A., “Chastotnaya teorema v teorii upravleniya”, Sib. Matem. Zh., 14:2 (1973), 384–419

[5] Aizerman M. A., Gantmakher F. R., Absolyutnaya ustoichivost reguliruemykh sistem, AN SSSR, M., L., 1963

[6] Gantmakher F. R., Yakubovich V. A., “Absolyutnaya ustoichivost nelineinykh reguliruemykh sistem”, Trudy II Vsesoyuznogo s'ezda po teoreticheskoi i prikladnoi mekhanike, Nauka, M., 1965

[7] Siljak D., Nonlinear systems, John Wiley and Sons, Inc., New York, London, Sydney, Toronto, 1969 | Zbl

[8] Lee E. B., Markus L., Foundation of optimal control theory, London, Sydney, 1967 | MR

[9] Yakubovich V. A., Metody issledovaniya nelineinykh sistem avtomaticheskogo upravleniya, gl. II, III, ed. R. P. Nelepina, Nauka, M., 1975 | MR

[10] Noldus E., “A frequency domain approach to the problem of the existence of periodic motion in autonomous nonlinear feedback systems”, Z. Angew. Math. und Mech., 49:3 (1969), 167–175 | DOI | MR

[11] Yakubovich V. A., “Chastotnye usloviya avtokolebanii v nelineinykh sistemakh s odnoi statsionarnoi nelineinostyu”, Sib. Matem. Zh., XIV:5 (1973), 1100–1129

[12] Leonov G. A., “Chastotnye usloviya suschestvovaniya netrivialnykh periodicheskikh reshenii v avtonomnykh sistemakh”, Sib. Matem. Zh., XIV:6 (1973), 1259–1265 | MR

[13] Leonov G. A., “Ob odnom klasse nelineinykh differentsialnykh uravnenii, dlya kotorykh voprosy suschestvovaniya ogranichennykh i periodicheskikh reshenii mogut byt resheny effektivno”, Vestnik LGU, 1972, no. 19, 29–32 | MR | Zbl

[14] Fradkov A. A., “Sintez adaptivnoi sistemy stabilizatsii dinamicheskogo ob'ekta”, Avtomatika i telemekhanika, 1974, no. 12, 96–103 | MR | Zbl

[15] Fradkov A. A., “Kvadratichnye funktsii Lyapunova v zadache adaptivnoi stabilizatsii lineinogo dinamicheskogo ob'ekta”, Sib. Matem. Zh., XVII:2 (1975), 436–445 | MR

[16] Andreev V. A., Kazarinov Yu. F., Yakubovich V. A., “Sintez optimalnykh upravlenii dlya lineinykh neodnorodnykh sistem v zadachakh minimizatsii kvadratichnykh funktsionalov”, Dokl. AN SSSR, 199:2 (1971), 257–261

[17] Andreev V. A., Plyako D. A., “Ob odnoi zadache optimalnogo upravleniya lineinoi neodnorodnoi sistemoi”, Sib. Matem. Zh., XIV:3 (1972), 660–665

[18] Andreev V. A., “Sintez optimalnykh upravlenii dlya neodnorodnykh lineinykh sistem s kvadratichnym kriteriem kachestva”, Sib. Matem. Zh., 13 (1972), 698–702 | Zbl

[19] Faurre P., “Identification par minimisation d'une representation markovienne de processus aleaire”, Lecture Notes in Mathematics, 132, Springer Verlag, Berlin, Heidelberg, New York, 1970, 85–106, A collection of informal reports and seminars | MR

[20] Faurre P., Marmorat J. P., “Un algorithme de realisation stochastique”, Compt. Rend. Acad. Sci, Paris, serie A, 268 (1969), 978–981 | MR | Zbl

[21] Faurre P., “Identification of marcorian representation for stochastic processes”, 4th Hawaii International Conference on System Sciences (Jan. 12–14), 1971, 576–578

[22] Yakubovich V. A., “Chastotnaya teorema dlya sluchaya, kogda prostranstva sostoyanii i upravlenii – gilbertovy, i ee primeneniya v nekotorykh zadachakh sinteza optimalnogo upravleniya, I”, Sib. Matem. Zh., 15:3 (1974), 639–668 | Zbl

[23] Nudelman A. A., Shvartsman N. A., “O suschestvovanii reshenii nekotorykh operatornykh uravnenii”, Sib. Matem. Zh., XVI:3 (1975), 562–571 | MR

[24] Yakubovich V. A., “Chastotnaya teorema dlya sluchaya, kogda prostranstva sostoyanii i upravlenii – gilbertovy, i ee primenenie v nekotorykh zadachakh sinteza optimalnogo upravleniya, II”, Sib. Matem. Zh., XV:3 (1975), 1081–1102

[25] Brusin V. A., “O suschestvovanii globalnykh funktsionalov Lyapunova dlya nelineinykh raspredelennykh sistem”, Dinamika sistem, Mezhvuz. sb., no. 7, GGU, Gorkii, 1975, 18–33 | MR

[26] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1963 | MR

[27] Balakrishnan A. V., Vvedenie v teoriyu optimizatsii v gilbertovom prostranstve, Mir, M., 1974 | MR | Zbl

[28] Funktsionalnyi analiz, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972

[29] Lions Zh. L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami v chastnykh proizvodnykh, Mir, M., 1972 | MR

[30] Milshtein G. N., “Eksponentsialnaya ustoichivost polozhitelnykh polugrupp v lineinom topologicheskom prostranstve, II”, Izv. Vuzov, Matematika, 1975, no. 10, 51–61