Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 725-748
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article a method of a priori estimates is used to solve an integro-differential equation and to substantially strengthen previously obtained sufficient conditions for the operator $\mathscr Kf=i\int_0^xk(x,t)f(t)\,dt$ to be similar to the operator $\mathscr Tf=i\int_0^xf(t)\,dt$ in the scale $L_p[0,1]$. Criteria for the similarity of $\mathscr K$ to $\mathscr T$ are found for a wide class of kernels which depend on a difference.
Bibliography: 17 titles.
@article{IM2_1977_11_4_a2,
author = {M. M. Malamud and \`E. R. Tsekanovskii},
title = {Of {Volterra} operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$},
journal = {Izvestiya. Mathematics },
pages = {725--748},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a2/}
}
TY - JOUR AU - M. M. Malamud AU - È. R. Tsekanovskii TI - Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$ JO - Izvestiya. Mathematics PY - 1977 SP - 725 EP - 748 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a2/ LA - en ID - IM2_1977_11_4_a2 ER -
M. M. Malamud; È. R. Tsekanovskii. Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 725-748. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a2/