Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 725-748

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article a method of a priori estimates is used to solve an integro-differential equation and to substantially strengthen previously obtained sufficient conditions for the operator $\mathscr Kf=i\int_0^xk(x,t)f(t)\,dt$ to be similar to the operator $\mathscr Tf=i\int_0^xf(t)\,dt$ in the scale $L_p[0,1]$. Criteria for the similarity of $\mathscr K$ to $\mathscr T$ are found for a wide class of kernels which depend on a difference. Bibliography: 17 titles.
@article{IM2_1977_11_4_a2,
     author = {M. M. Malamud and \`E. R. Tsekanovskii},
     title = {Of {Volterra} operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$},
     journal = {Izvestiya. Mathematics },
     pages = {725--748},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a2/}
}
TY  - JOUR
AU  - M. M. Malamud
AU  - È. R. Tsekanovskii
TI  - Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 725
EP  - 748
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a2/
LA  - en
ID  - IM2_1977_11_4_a2
ER  - 
%0 Journal Article
%A M. M. Malamud
%A È. R. Tsekanovskii
%T Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$
%J Izvestiya. Mathematics 
%D 1977
%P 725-748
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a2/
%G en
%F IM2_1977_11_4_a2
M. M. Malamud; È. R. Tsekanovskii. Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 725-748. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a2/