Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 725-748.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article a method of a priori estimates is used to solve an integro-differential equation and to substantially strengthen previously obtained sufficient conditions for the operator $\mathscr Kf=i\int_0^xk(x,t)f(t)\,dt$ to be similar to the operator $\mathscr Tf=i\int_0^xf(t)\,dt$ in the scale $L_p[0,1]$. Criteria for the similarity of $\mathscr K$ to $\mathscr T$ are found for a wide class of kernels which depend on a difference. Bibliography: 17 titles.
@article{IM2_1977_11_4_a2,
     author = {M. M. Malamud and \`E. R. Tsekanovskii},
     title = {Of {Volterra} operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$},
     journal = {Izvestiya. Mathematics },
     pages = {725--748},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a2/}
}
TY  - JOUR
AU  - M. M. Malamud
AU  - È. R. Tsekanovskii
TI  - Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 725
EP  - 748
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a2/
LA  - en
ID  - IM2_1977_11_4_a2
ER  - 
%0 Journal Article
%A M. M. Malamud
%A È. R. Tsekanovskii
%T Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$
%J Izvestiya. Mathematics 
%D 1977
%P 725-748
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a2/
%G en
%F IM2_1977_11_4_a2
M. M. Malamud; È. R. Tsekanovskii. Of Volterra operators in the scale $L_p[0,1]$ $(1\leqslant p\leqslant\infty)$. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 725-748. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a2/

[1] Livshits M. S., “O spektralnom razlozhenii lineinykh nesamosopryazhennykh operatorov”, Matem. sb., 34(76) (1969), 145–199

[2] Sakhnovich L. A., “O privedenii volterrovykh operatorov k prosteishemu vidu i obratnykh zadachakh”, Izv. AN SSSR. Ser. matem., 21 (1957), 235–262

[3] Sakhnovich L. A., “Spektralnyi analiz operatorov vida $\mathscr{K}f=\int_0^x k(x-t)f(t)dt$”, Izv. AN SSSR. Ser. matem., 22 (1958), 299–308

[4] Kalmushevskii I. I., “O lineinoi ekvivalentnosti volterrovykh operatorov”, Uspekhi matem. nauk, XX:6(126) (1965), 93–97

[5] Kalish G. K., “On similarity, redusing manifolds and unitary equivalence of certain Volterra operators”, Ann. Math., 6:3 (1957), 481–494 | DOI | MR

[6] Kalish G. K., “On similarity, invariants of certain operators in $L_p$”, Pacific Journal Math., 11:1 (1961), 247–252 | MR

[7] Freeman J. M., “Volterra operators similar to $J\colon f\to\int_0^x f(t)dt$”, Trans. Amer. Math. Soc., 116 (1965), 181–192 | DOI | MR | Zbl

[8] Danford N., Shvarts Dzh., Lineinye operatory, chast 1, IL, M., 1962

[9] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[10] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965 | MR

[11] Kisilevskii G. E., “Integralnye volterrovy operatory v nekotorykh funktsionalnykh banakhovykh prostranstvakh”, Funkts. analiz i ego prilozheniya, 8:4 (1974), 85–86 | MR | Zbl

[12] Malamud M. M., “O dostatochnykh usloviyakh lineinoi ekvivalentnosti volterrovykh operatorov”, Teoriya funktsii, funkts. analiz, 1975, no. 23, 59–69, Kharkov | MR | Zbl

[13] Osher S. I., “Two papers on the similarity of certain Volterra integral operators”, Memories Amer. Math. Soc., 73 (1967), 23–35 | MR

[14] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960 | MR

[15] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[16] Malamud M. M., Tsekanovskii E. R., “Kriterii lineinoi ekvivalentnosti volterrovykh operatorov v shkale $L_p$”, Uspekhi matem. nauk, 30:5 (1975), 217–218 | MR | Zbl

[17] Frankfurt R. and Rovnyak I., “Finite convolution operators”, J. Math. An. Appl., 49 (1975), 347–374 | DOI | MR