Finite simple groups with Sylow 2-subgroups of order~$2^7$
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 709-723
Voir la notice de l'article provenant de la source Math-Net.Ru
The following theorem is proved in the paper. If a Sylow 2-subgroup $T$ of a finite simple group is of order $2^7$ , then either the nilpotency class of $T$ is not greater than 2 or the sectional 2-rank of $T$ does not exceed 4. This theorem and known classification results lead to a list of all finite simple groups with Sylow 2-subgroups of order $\leqslant2^7$.
Bibliography: 22 titles.
@article{IM2_1977_11_4_a1,
author = {A. S. Kondrat'ev},
title = {Finite simple groups with {Sylow} 2-subgroups of order~$2^7$},
journal = {Izvestiya. Mathematics },
pages = {709--723},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a1/}
}
A. S. Kondrat'ev. Finite simple groups with Sylow 2-subgroups of order~$2^7$. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 709-723. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a1/