Finite simple groups with Sylow 2-subgroups of order~$2^7$
Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 709-723

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved in the paper. If a Sylow 2-subgroup $T$ of a finite simple group is of order $2^7$ , then either the nilpotency class of $T$ is not greater than 2 or the sectional 2-rank of $T$ does not exceed 4. This theorem and known classification results lead to a list of all finite simple groups with Sylow 2-subgroups of order $\leqslant2^7$. Bibliography: 22 titles.
@article{IM2_1977_11_4_a1,
     author = {A. S. Kondrat'ev},
     title = {Finite simple groups with {Sylow} 2-subgroups of order~$2^7$},
     journal = {Izvestiya. Mathematics },
     pages = {709--723},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a1/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
TI  - Finite simple groups with Sylow 2-subgroups of order~$2^7$
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 709
EP  - 723
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a1/
LA  - en
ID  - IM2_1977_11_4_a1
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%T Finite simple groups with Sylow 2-subgroups of order~$2^7$
%J Izvestiya. Mathematics 
%D 1977
%P 709-723
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a1/
%G en
%F IM2_1977_11_4_a1
A. S. Kondrat'ev. Finite simple groups with Sylow 2-subgroups of order~$2^7$. Izvestiya. Mathematics , Tome 11 (1977) no. 4, pp. 709-723. http://geodesic.mathdoc.fr/item/IM2_1977_11_4_a1/