In the structure of exceptional sets of entire curves
Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 335-352

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\vec G(z)=\{g_1(z),\dots,g_p(z)\}$ be a $p$-dimensional entire curve, $D(\vec G)=\{\vec a:\delta(\vec a,\vec G)>0\}$, $V(\vec G)=\{\vec a:\Delta(\vec a,\vec G)>0\}$ and $\Omega(\vec G)=\{\vec a:\beta(\vec a,\vec G)>0\}$ its sets of deficient values and set of positive deviations. This paper is devoted to an investigation of the structure of $D(\vec G)$, $V(\vec G)$ and $\Omega(\vec G)$ without any supplementary assumption that the vectors belong to a fixed admissible system. The main result shows that these sets are exceptional in a certain sense. Bibliography: 11 titles.
@article{IM2_1977_11_2_a6,
     author = {V. P. Petrenko},
     title = {In the structure of exceptional sets of entire curves},
     journal = {Izvestiya. Mathematics },
     pages = {335--352},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a6/}
}
TY  - JOUR
AU  - V. P. Petrenko
TI  - In the structure of exceptional sets of entire curves
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 335
EP  - 352
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a6/
LA  - en
ID  - IM2_1977_11_2_a6
ER  - 
%0 Journal Article
%A V. P. Petrenko
%T In the structure of exceptional sets of entire curves
%J Izvestiya. Mathematics 
%D 1977
%P 335-352
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a6/
%G en
%F IM2_1977_11_2_a6
V. P. Petrenko. In the structure of exceptional sets of entire curves. Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 335-352. http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a6/