In the structure of exceptional sets of entire curves
Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 335-352
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\vec G(z)=\{g_1(z),\dots,g_p(z)\}$ be a $p$-dimensional entire curve,
$D(\vec G)=\{\vec a:\delta(\vec a,\vec G)>0\}$, $V(\vec G)=\{\vec a:\Delta(\vec a,\vec G)>0\}$ and $\Omega(\vec G)=\{\vec a:\beta(\vec a,\vec G)>0\}$ its sets of deficient values and set of positive deviations. This paper is devoted to an investigation of the structure of $D(\vec G)$, $V(\vec G)$ and $\Omega(\vec G)$ without any supplementary assumption that the vectors belong to a fixed admissible system. The main result shows that these sets are exceptional in a certain sense.
Bibliography: 11 titles.
@article{IM2_1977_11_2_a6,
author = {V. P. Petrenko},
title = {In the structure of exceptional sets of entire curves},
journal = {Izvestiya. Mathematics },
pages = {335--352},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a6/}
}
V. P. Petrenko. In the structure of exceptional sets of entire curves. Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 335-352. http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a6/