On interpolation sets for the algebra~$R(X)$
Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 308-316.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a connection is established between the behavior of the series remainder $$ R_n(z_m)=\sum_{k=n}^\infty2^k\gamma(A_k(z_m)\setminus X) $$ (where $A_k(z_m)$ is the annulus $\{1/2^{k+1}|z-z_m|1/2^k\}$, and $\gamma$ is analytic capacity) and the Gleason distance $d(z_m,z_0)$ in the algebra $R(X)$, as $z_m\to z_0$. It is proved that if the compact set $X\subset\mathbf C$, $P$ is the set of all peak points of $R(X)$, $\{z_m\}_{m=1}^\infty\subset X\setminus P$, and $z_m\to z_0$ as $m\to\infty$, then in order that $d(z_m,z_0)\to0$ as $m\to\infty$, it is necessary and sufficient that $R_n(z)\to0$ uniformly on the set $\{z_m\}_{m=1}^\infty$ as $n\to\infty$. This result is applied in the study of interpolation sets of the algebra $R(X)$. Bibliography: 10 titles.
@article{IM2_1977_11_2_a4,
     author = {K. Val'des Kastro and M. S. Mel'nikov},
     title = {On interpolation sets for the algebra~$R(X)$},
     journal = {Izvestiya. Mathematics },
     pages = {308--316},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a4/}
}
TY  - JOUR
AU  - K. Val'des Kastro
AU  - M. S. Mel'nikov
TI  - On interpolation sets for the algebra~$R(X)$
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 308
EP  - 316
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a4/
LA  - en
ID  - IM2_1977_11_2_a4
ER  - 
%0 Journal Article
%A K. Val'des Kastro
%A M. S. Mel'nikov
%T On interpolation sets for the algebra~$R(X)$
%J Izvestiya. Mathematics 
%D 1977
%P 308-316
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a4/
%G en
%F IM2_1977_11_2_a4
K. Val'des Kastro; M. S. Mel'nikov. On interpolation sets for the algebra~$R(X)$. Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 308-316. http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a4/

[1] Carleson L., “Representations of continuous functions”, Math. Z., 66 (1957), 447–451 | DOI | MR | Zbl

[2] Carleson L., “Interpolation by bounded analytic functions and the corona problem”, Ann. Math., 76 (1962), 542–559 | DOI | MR

[3] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963

[4] Oksendal B. K., “Null sets for measures orthogonal to $R(x)$”, Amer. J. Math., 94:2 (1972), 331–342 | DOI | MR

[5] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, Uspekhi matem. nauk, 22:6 (1967), 141–199 | MR

[6] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[7] Melnikov M. S., “Otsenka integrala Koshi po analiticheskoi krivoi”, Matem. sb., 71:4 (1966), 503–514 | MR

[8] Melnikov M. S., Sinanyan S. O., “Voprosy teorii priblizhenii funktsii odnogo kompleksnogo peremennogo”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 4, VINITI, 1975, 143–250

[9] O'Farrel A. G., “Eqviconvergence of derivations”, Proc. J. Math., 53:2 (1974), 539–544

[10] Gamelin T. W., Garnett J., “Distinguished Homomorphisms and Fiber Algebras”, Amer. J. Math., 92:2 (1970), 455–474 | DOI | MR | Zbl