On interpolation sets for the algebra~$R(X)$
Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 308-316
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper a connection is established between the behavior of the series remainder
$$
R_n(z_m)=\sum_{k=n}^\infty2^k\gamma(A_k(z_m)\setminus X)
$$
(where $A_k(z_m)$ is the annulus $\{1/2^{k+1}|z-z_m|1/2^k\}$, and $\gamma$ is analytic capacity) and the Gleason distance $d(z_m,z_0)$ in the algebra $R(X)$, as $z_m\to z_0$.
It is proved that if the compact set $X\subset\mathbf C$, $P$ is the set of all peak points of $R(X)$, $\{z_m\}_{m=1}^\infty\subset X\setminus P$, and $z_m\to z_0$ as $m\to\infty$, then in order that $d(z_m,z_0)\to0$ as $m\to\infty$, it is necessary and sufficient that $R_n(z)\to0$ uniformly on the set $\{z_m\}_{m=1}^\infty$ as $n\to\infty$.
This result is applied in the study of interpolation sets of the algebra $R(X)$.
Bibliography: 10 titles.
@article{IM2_1977_11_2_a4,
author = {K. Val'des Kastro and M. S. Mel'nikov},
title = {On interpolation sets for the algebra~$R(X)$},
journal = {Izvestiya. Mathematics },
pages = {308--316},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a4/}
}
K. Val'des Kastro; M. S. Mel'nikov. On interpolation sets for the algebra~$R(X)$. Izvestiya. Mathematics , Tome 11 (1977) no. 2, pp. 308-316. http://geodesic.mathdoc.fr/item/IM2_1977_11_2_a4/