A~description of the quasi-simple irreducible representations of the groups $U(n,1)$ and $\operatorname{Spin}(n,1)$
Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 31-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article deals with a family of elementary $G$-modules $E(\sigma)$, where $G$ is either one of the groups $U(n,1)$, with $n>1$, or one of the groups $\operatorname{Spin}(n,1)$, wit $n>2$. A description is given of all of the submodules of $E(\sigma)$; in addition, these submodules are characterized in terms of the kernels and images of the intertwining operators (symmetry operators). A description is given of all of the factors of $E(\sigma)$ up to isomorphism. It follows from these results that every quasi-simple irreducible Banach $G$-module is infinitesimally equivalent to a submodule of some $E(\sigma)$. Bibliography: 9 titles.
@article{IM2_1977_11_1_a1,
     author = {D. P. Zhelobenko},
     title = {A~description of the quasi-simple irreducible representations of the groups $U(n,1)$ and $\operatorname{Spin}(n,1)$},
     journal = {Izvestiya. Mathematics },
     pages = {31--50},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a1/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - A~description of the quasi-simple irreducible representations of the groups $U(n,1)$ and $\operatorname{Spin}(n,1)$
JO  - Izvestiya. Mathematics 
PY  - 1977
SP  - 31
EP  - 50
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a1/
LA  - en
ID  - IM2_1977_11_1_a1
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T A~description of the quasi-simple irreducible representations of the groups $U(n,1)$ and $\operatorname{Spin}(n,1)$
%J Izvestiya. Mathematics 
%D 1977
%P 31-50
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a1/
%G en
%F IM2_1977_11_1_a1
D. P. Zhelobenko. A~description of the quasi-simple irreducible representations of the groups $U(n,1)$ and $\operatorname{Spin}(n,1)$. Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 31-50. http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a1/

[1] Zhelobenko D. P., Garmonicheskii analiz na poluprostykh kompleksnykh gruppakh Li, Nauka, M., 1974 | MR | Zbl

[2] Zhelobenko D. P., “Operatory diskretnoi simmetrii dlya reduktivnykh grupp Li”, Izvestiya AN SSSR. Ser. matem., 40 (1976), 1055–1083 | Zbl

[3] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl

[4] Klymyk A. V., Shirokov V. A., Representations of Lie groups $U(n,1)$, $IU(n)$ and their algebras, I, II, preprint, Kiev, 1974

[5] Knapp A. W., Stein E. M., “Interwining operators for semi-simple groups”, Ann. Math., 93 (1971), 489–578 | DOI | MR | Zbl

[6] Kraljevič H., “Representations of the universal covering group of the group $U(n,1)$”, Glasnik Mat., 8 (1973), 23–72 | Zbl

[7] Lepowsky J., “Algebraic results on representations of semi-simple Lie groups”, Trans. Amer. Math. Soc., 176 (1973), 1–44 | DOI | MR | Zbl

[8] Thieleker E., “On the quasi-simple irreducible representations of the Lorentz groups”, Trans. Amer. Math. Soc., 179 (1973), 465–505 | DOI | MR | Zbl

[9] Schiffmann G., “Intégrales d'entrelacement”, C. R. Acad. Sci. Paris Sér. A-B, 266 (1968), A47–A49 | MR