A~description of the quasi-simple irreducible representations of the groups $U(n,1)$ and $\operatorname{Spin}(n,1)$
Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 31-50
Voir la notice de l'article provenant de la source Math-Net.Ru
This article deals with a family of elementary $G$-modules $E(\sigma)$, where $G$ is either one of the groups $U(n,1)$, with $n>1$, or one of the groups $\operatorname{Spin}(n,1)$, wit $n>2$. A description is given of all of the submodules of $E(\sigma)$; in addition, these submodules are characterized in terms of the kernels and images of the intertwining operators (symmetry operators). A description is given of all of the factors of $E(\sigma)$ up to isomorphism. It follows from these results that every quasi-simple irreducible Banach $G$-module is infinitesimally equivalent to a submodule of some $E(\sigma)$.
Bibliography: 9 titles.
@article{IM2_1977_11_1_a1,
author = {D. P. Zhelobenko},
title = {A~description of the quasi-simple irreducible representations of the groups $U(n,1)$ and $\operatorname{Spin}(n,1)$},
journal = {Izvestiya. Mathematics },
pages = {31--50},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a1/}
}
TY - JOUR
AU - D. P. Zhelobenko
TI - A~description of the quasi-simple irreducible representations of the groups $U(n,1)$ and $\operatorname{Spin}(n,1)$
JO - Izvestiya. Mathematics
PY - 1977
SP - 31
EP - 50
VL - 11
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a1/
LA - en
ID - IM2_1977_11_1_a1
ER -
%0 Journal Article
%A D. P. Zhelobenko
%T A~description of the quasi-simple irreducible representations of the groups $U(n,1)$ and $\operatorname{Spin}(n,1)$
%J Izvestiya. Mathematics
%D 1977
%P 31-50
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a1/
%G en
%F IM2_1977_11_1_a1
D. P. Zhelobenko. A~description of the quasi-simple irreducible representations of the groups $U(n,1)$ and $\operatorname{Spin}(n,1)$. Izvestiya. Mathematics , Tome 11 (1977) no. 1, pp. 31-50. http://geodesic.mathdoc.fr/item/IM2_1977_11_1_a1/