On spaces of Riesz potentials
Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1089-1117
Voir la notice de l'article provenant de la source Math-Net.Ru
In connection with problems which arise in the theory of integral equations of the first kind with a potential-type kernel we investigate the space of Riesz potentials $I^\alpha(L_p)=\{f=K^\alpha\varphi;\varphi\in L_p(R^n),1$, where $K^\alpha$ is the Riesz integration operator ($\widehat{K^\alpha\varphi}(x)=|(x)|^{-\alpha}\widehat\varphi(x)$). We give a description of the space $I^\alpha(L_p)$ in terms of differences of singular integrals, establish a theorem on denseness of $C^\infty_0(R^n)$ in $I^\alpha(L_p)$, and indicate a “weight” invariant description of $I^\alpha(L_p)$.
Bibliography: 44 titles
@article{IM2_1976_10_5_a7,
author = {S. G. Samko},
title = {On spaces of {Riesz} potentials},
journal = {Izvestiya. Mathematics },
pages = {1089--1117},
publisher = {mathdoc},
volume = {10},
number = {5},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a7/}
}
S. G. Samko. On spaces of Riesz potentials. Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1089-1117. http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a7/