On spaces of Riesz potentials
Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1089-1117

Voir la notice de l'article provenant de la source Math-Net.Ru

In connection with problems which arise in the theory of integral equations of the first kind with a potential-type kernel we investigate the space of Riesz potentials $I^\alpha(L_p)=\{f=K^\alpha\varphi;\varphi\in L_p(R^n),1$, where $K^\alpha$ is the Riesz integration operator ($\widehat{K^\alpha\varphi}(x)=|(x)|^{-\alpha}\widehat\varphi(x)$). We give a description of the space $I^\alpha(L_p)$ in terms of differences of singular integrals, establish a theorem on denseness of $C^\infty_0(R^n)$ in $I^\alpha(L_p)$, and indicate a “weight” invariant description of $I^\alpha(L_p)$. Bibliography: 44 titles
@article{IM2_1976_10_5_a7,
     author = {S. G. Samko},
     title = {On spaces of {Riesz} potentials},
     journal = {Izvestiya. Mathematics },
     pages = {1089--1117},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a7/}
}
TY  - JOUR
AU  - S. G. Samko
TI  - On spaces of Riesz potentials
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 1089
EP  - 1117
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a7/
LA  - en
ID  - IM2_1976_10_5_a7
ER  - 
%0 Journal Article
%A S. G. Samko
%T On spaces of Riesz potentials
%J Izvestiya. Mathematics 
%D 1976
%P 1089-1117
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a7/
%G en
%F IM2_1976_10_5_a7
S. G. Samko. On spaces of Riesz potentials. Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1089-1117. http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a7/