Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1976_10_5_a7, author = {S. G. Samko}, title = {On spaces of {Riesz} potentials}, journal = {Izvestiya. Mathematics }, pages = {1089--1117}, publisher = {mathdoc}, volume = {10}, number = {5}, year = {1976}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a7/} }
S. G. Samko. On spaces of Riesz potentials. Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1089-1117. http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a7/
[1] Burenkov V. I., “Teoremy vlozheniya i prodolzheniya dlya klassov differentsiruemykh funktsii mnogikh peremennykh, zadannykh vo vsem prostranstve”, Itogi nauki. Ser. Matematika. Mat. anal. 1965, VINITI, M., 1966, 71–155 | MR | Zbl
[2] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, GIFML, M., 1959
[3] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, GIFML, M., 1958
[4] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963
[5] Danford N., Shvarts Dzh., Lineinye operatory, ch. I., IL, M., 1962
[6] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl
[7] Lizorkin P. I., “Obobschennoe liuvillevskoe differentsirovanie i funktsionalnye prostranstva $L^r_p(E_n)$. Teoremy vlozheniya”, Matem. sb., 60:3 (1963), 325–353 | MR | Zbl
[8] Lizorkin P. I., “Obobschennoe liuvillevskoe differentsirovanie i metod multiplikatorov v teorii vlozhenii klassov differentsiruemykh funktsii”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 105, 1969, 89–167 | MR | Zbl
[9] Lizorkin P. I., “Opisanie prostranstv $L^r_p(R^n)$ v terminakh raznostnykh singulyarnykh integralov”, Matem. sb., 81:1 (1970), 79–91 | MR | Zbl
[10] Lizorkin P. I., “Operatory, svyazannye s drobnym differentsirovaniem i klassy differentsiruemykh funktsii”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 117, 1972, 212–243 | MR | Zbl
[11] Mikhailov L. G., “O nekotorykh mnogomernykh integralnykh operatorakh s odnorodnymi yadrami”, Dokl. AN SSSR, 176:2 (1967), 263–265
[12] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, GIFML, M., 1962
[13] Natanson I. M., Teoriya funktsii veschestvennoi peremennoi, GIFML, M., 1957 | MR
[14] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR
[15] Pigolkina T. S., “O plotnosti finitnykh funktsii v vesovykh klassakh”, Matem. zametki, 2:1 (1967), 53–60 | MR | Zbl
[16] Rybnikov K. A., Vvedenie v kombinatornyi analiz, Mosk. un-t, 1972 | MR
[17] Samko S. G., “Ob integralnom module nepreryvnosti potentsialov s plotnostyami, summiruemymi na osi s vesom”, Matematicheskii analiz i ego prilozheniya, t. 1, Rostovskii un-t, Rostov-na-Donu, 1969, 175–184 | MR | Zbl
[18] Samko S. G., “Ob operatorakh tipa potentsiala”, Dokl. AN SSSR, 196:2 (1971), 299–301 | MR | Zbl
[19] Samko S. G., “Ob integralnykh uravneniyakh tipa svertki pervogo roda so stepennym yadrom”, Izvestiya vuzov. Matematika, 1975, no. 4, 60–67 | MR | Zbl
[20] Samko S. G., “O prostranstve $I^\alpha(L_p)$ drobnykh integralov i ob operatorakh tipa potentsiala”, Izv. AN ArmSSR. Matematika, VIII:5 (1973), 359–383 | MR
[21] Samko S. G., “O dokazatelstve teoremy Babenko–Steina”, Izv. vuzov. Matematika, 1975, no. 5, 47–51 | MR | Zbl
[22] Sobolev S. L., “Ob odnoi teoreme funktsionalnogo analiza”, Matem. sb., 4(46) (1938), 471–498
[23] Stein E. M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[24] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, GIFML, M., 1960
[25] Khardi G. X., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948
[26] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962
[27] Aronszajn N., Smith K., “Theory of Bessel potentials. I”, Ann. de l'Institute Fourier, XI (1961), 385–475 | MR
[28] Calderon A. P., “Lebesque spaces of differentiable functions and distributions”, Proc. Simposia in Pure Math., v. IV, Amer. Math. Soc., Providence, R. J., 1961, 33–50 | MR
[29] Calderon A. P., Zygmund A., “On the existence of certain singular integrals”, Acta Math., 88 (1952), 85–139 | DOI | MR | Zbl
[30] Cotlar M., Condiciones de continuidad de operadores potentiates y de Hilbert, Cursos y Semin. de Mat., 2, 1959, 354 pp. | MR | Zbl
[31] Cotlar M., Ortiz E. L., “On some inequalities of potential operators”, Univ. Nac. La Plata Publ. Fac. Ci. Físicomat. Serie Segunda Rev., 8 (1962), 16–34 | MR
[32] Hadamard J., “Essais sur l'étude des fonctions données par leur developpement de Taylor”, J. Math.(4), 8 (1892), 101–186
[33] Hardy G. H., Littlewood J. E., “Some properties of fractional integrals. I”, Math. Z., 27 (1928), 565–606 | DOI | MR | Zbl
[34] Herz C. S., “Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms”, J. Math. and Mech., 18:4 (1968), 283–323 | MR | Zbl
[35] Horvath J., “Sur les fonctions conjuguées a plusieurs variable”, Nederl. Akad. Wetensch. Indag. Math., 15 (1963), 17–29 | MR
[36] Horvath J., “Singular integral operators and spherical harmonics”, Trans. Amer. Math. Soc., 82:1 (1956), 52–63 | DOI | MR | Zbl
[37] Kesawa M. P., “On the sum $\sum_{r=0}^{n-1}(-1)^r {n\choose r}(n-r)^m$”, Math. Stud., 39:1–4 (1971), 415–416
[38] Marchaud A., “Sur les derivées et sur les differences des fonctions”, J. Math. pures et appl., 6 (1927), 337–425 | Zbl
[39] Okikiolu G. O., “On the infinitesimal generator of the Poisson operator. II. The $n$-dimensional case”, Proc. Cambr. Phil. Soc., 63:4 (1967), 1021–1025 | DOI | MR | Zbl
[40] Okikiolu G. O., “On inequalities for integral operators”, Glasgow Math. J., 11:2 (1970), 126–133 | DOI | MR | Zbl
[41] Okikiolu G. O., Aspects of the theory of bounded integral operators in $L_p$-spaces, Acad. Press, London, 1971 | MR | Zbl
[42] Stein E. M., “The characterization of functions arizing as potentials. I”, Bull. Amer. Math. Soc., 67 (1961), 102–104 | DOI | MR
[43] Stein E. M., Weiss G., “Fractional integrals on $n$-dimensional Eucledean space”, J. Math. and Mech., 7:4 (1958), 503–514 | MR | Zbl
[44] Trebels W., “Generalized Lipschitz conditions and Riesz derivatives on the space of Bessel potentials $L_\alpha^p$, $0\alpha2$. I. Conditions for elements of $L_\alpha^p$ and their Riesz transforms, $0\alpha\leqslant 2$”, Appl. Anal., 1:1 (1971), 75–99 | DOI | MR | Zbl