On a~comparison theorem for linear differential equations
Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1075-1088

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved in the paper that the equation $u^{(n)}=a(t)u$ has property $\mathrm B$ (i.e. each solution of it, in the case of even $n$, either is oscillating or satisfies the condition $|u^{(i)}(t)|\downarrow0$ for $t\to+\infty$ ($i=0,\dots, n-1$) or satisfies the condition $|u^{(i)}(t)|\uparrow+\infty$ for $t\to+\infty$ ($i=0,\dots,n-1$), and in the case of odd $n$, either is oscillating or satisfies the condition $|u^{(i)}(t)|\uparrow+\infty$ for $t\to+\infty$ ($i=0,\dots,n-1$)) if the equation $u^{(n)}=b(t)$ has the property $\mathrm B$ and $a(t)\geqslant b(t)\geqslant0$ for $t\in[0,+\infty)$. Bibliography: 8 titles.
@article{IM2_1976_10_5_a6,
     author = {T. A. Chanturiya},
     title = {On a~comparison theorem for linear differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {1075--1088},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a6/}
}
TY  - JOUR
AU  - T. A. Chanturiya
TI  - On a~comparison theorem for linear differential equations
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 1075
EP  - 1088
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a6/
LA  - en
ID  - IM2_1976_10_5_a6
ER  - 
%0 Journal Article
%A T. A. Chanturiya
%T On a~comparison theorem for linear differential equations
%J Izvestiya. Mathematics 
%D 1976
%P 1075-1088
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a6/
%G en
%F IM2_1976_10_5_a6
T. A. Chanturiya. On a~comparison theorem for linear differential equations. Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1075-1088. http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a6/