On a~comparison theorem for linear differential equations
Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1075-1088
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved in the paper that the equation $u^{(n)}=a(t)u$ has property $\mathrm B$ (i.e. each solution of it, in the case of even $n$, either is oscillating or satisfies the condition $|u^{(i)}(t)|\downarrow0$ for $t\to+\infty$ ($i=0,\dots, n-1$) or satisfies the condition $|u^{(i)}(t)|\uparrow+\infty$ for $t\to+\infty$ ($i=0,\dots,n-1$), and in the case of odd $n$, either is oscillating or satisfies the condition $|u^{(i)}(t)|\uparrow+\infty$ for $t\to+\infty$ ($i=0,\dots,n-1$)) if the equation $u^{(n)}=b(t)$ has the property $\mathrm B$ and $a(t)\geqslant b(t)\geqslant0$ for $t\in[0,+\infty)$.
Bibliography: 8 titles.
@article{IM2_1976_10_5_a6,
author = {T. A. Chanturiya},
title = {On a~comparison theorem for linear differential equations},
journal = {Izvestiya. Mathematics },
pages = {1075--1088},
publisher = {mathdoc},
volume = {10},
number = {5},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a6/}
}
T. A. Chanturiya. On a~comparison theorem for linear differential equations. Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1075-1088. http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a6/