On a~comparison theorem for linear differential equations
Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1075-1088.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved in the paper that the equation $u^{(n)}=a(t)u$ has property $\mathrm B$ (i.e. each solution of it, in the case of even $n$, either is oscillating or satisfies the condition $|u^{(i)}(t)|\downarrow0$ for $t\to+\infty$ ($i=0,\dots, n-1$) or satisfies the condition $|u^{(i)}(t)|\uparrow+\infty$ for $t\to+\infty$ ($i=0,\dots,n-1$), and in the case of odd $n$, either is oscillating or satisfies the condition $|u^{(i)}(t)|\uparrow+\infty$ for $t\to+\infty$ ($i=0,\dots,n-1$)) if the equation $u^{(n)}=b(t)$ has the property $\mathrm B$ and $a(t)\geqslant b(t)\geqslant0$ for $t\in[0,+\infty)$. Bibliography: 8 titles.
@article{IM2_1976_10_5_a6,
     author = {T. A. Chanturiya},
     title = {On a~comparison theorem for linear differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {1075--1088},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a6/}
}
TY  - JOUR
AU  - T. A. Chanturiya
TI  - On a~comparison theorem for linear differential equations
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 1075
EP  - 1088
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a6/
LA  - en
ID  - IM2_1976_10_5_a6
ER  - 
%0 Journal Article
%A T. A. Chanturiya
%T On a~comparison theorem for linear differential equations
%J Izvestiya. Mathematics 
%D 1976
%P 1075-1088
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a6/
%G en
%F IM2_1976_10_5_a6
T. A. Chanturiya. On a~comparison theorem for linear differential equations. Izvestiya. Mathematics , Tome 10 (1976) no. 5, pp. 1075-1088. http://geodesic.mathdoc.fr/item/IM2_1976_10_5_a6/

[1] Kondratev V. A., “O koleblemosti reshenii uravneniya $y^{(n)}+p(x)y=0$”, Tr. Mosk. matem. ob-va, 10 (1961), 419–436

[2] Kiguradze I. T., “O koleblemosti reshenii nelineinykh obyknovennykh differentsialnykh uravnenii”, Tr. V Mezhdunarodnoi konferentsii po nelineinym kolebaniyam, t. I, Institut matematiki AN USSR, Kiev, 1970, 293–297

[3] Kneser A., “Untersuchungen über die reelen Nullstellen der Integrate linearer Differentialgleichungen”, Math. Ann., 42 (1893), 409–435 | DOI | MR

[4] Fite W. B., “Concerning the zeros of the solutions of certain differential equations”, Trans. Amer. Math. Soc., 19:4 (1918), 341–352 | DOI | MR | Zbl

[5] Mikusinski J., “On Eite's oscillation therems”, Colloq. Math., 2 (1951), 34–39 | MR

[6] Kiguradze I. T., “O koleblemosti reshenii uravneniya $\frac{d^mu}{dt^m}+a(t)|u|^n \operatorname{sign} u=0$”, Matem. sb., 65(107):2 (1964), 172–187 | MR | Zbl

[7] Sobol I. M., “Ob asimptoticheskom povedenii reshenii lineinykh differentsialnykh uravnenii”, Dokl. AN SSSR, 61:2 (1948), 219–222 | MR | Zbl

[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR