Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1976_10_4_a8, author = {G. R. Belitskii}, title = {Normal forms for formal series and germs of $C^\infty$-mappings with respect to the action of a~group}, journal = {Izvestiya. Mathematics }, pages = {809--821}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {1976}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a8/} }
TY - JOUR AU - G. R. Belitskii TI - Normal forms for formal series and germs of $C^\infty$-mappings with respect to the action of a~group JO - Izvestiya. Mathematics PY - 1976 SP - 809 EP - 821 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a8/ LA - en ID - IM2_1976_10_4_a8 ER -
G. R. Belitskii. Normal forms for formal series and germs of $C^\infty$-mappings with respect to the action of a~group. Izvestiya. Mathematics , Tome 10 (1976) no. 4, pp. 809-821. http://geodesic.mathdoc.fr/item/IM2_1976_10_4_a8/
[1] Sternberg S., “On the structure of local homeomorphism of Euclidean $n$-space”, Amer. J. of Mathematic, 80 (1958), 623–631 | DOI | MR | Zbl
[2] Sternberg S., “The structure of local homeomorphism”, Amer. J. of Math., 81:3 (1959), 578–604 | DOI | MR | Zbl
[3] Chen K. T., “Equivalence and decomposition of vector fields about an elementary critical points”, Amer. J. of Math., 85:4 (1965), 693–722 | DOI | MR
[4] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii”, Tr. Mosk. matem. obschestva, 1971, no. 25, 119–262 | Zbl
[5] Bokhner S., Martin I. T., Funktsii mnogikh kompleksnykh peremennykh, IL, M., 1951
[6] Mozer Yu., Lektsii o gamiltonovykh sistemakh, Mir, M., 1973
[7] Belitskii G. R., “O normalnykh formakh lokalnykh otobrazhenii”, Uspekhi matem. nauk, 30:1 (1975), 223 | MR | Zbl
[8] Belitskii G. R., “Rostki otobrazhenii, $\omega$-opredelennye otnositelno dannoi gruppy”, Matem. sb., 94:7 (1974), 452–467
[9] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl
[10] Belitskii G. R., “Funktsionalnye uravneniya i lokalnaya sopryazhennost otobrazhenii klassa $C^\infty$”, Matem. sb., 91:4 (1973), 565–579