Equiconvergence of expansions in a~multiple Fourier series and Fourier integral for summation over squares
Izvestiya. Mathematics , Tome 10 (1976) no. 3, pp. 652-671
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work there are constructed a function $f(\overline x)\in L_1([-\pi,\pi]^2)$ such that the difference between the Fourier series expansion and the Fourier integral expansion for summation over squares diverges almost everywhere on $\{[-\pi,\pi]^2\}$, and a function $f(\overline x)\in L_p([-\pi,\pi]^N)$, $p>1$, $N\geqslant2$, for which the difference diverges at a point.
Bibliography: 5 titles.
@article{IM2_1976_10_3_a9,
author = {I. L. Bloshanskii},
title = {Equiconvergence of expansions in a~multiple {Fourier} series and {Fourier} integral for summation over squares},
journal = {Izvestiya. Mathematics },
pages = {652--671},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a9/}
}
TY - JOUR AU - I. L. Bloshanskii TI - Equiconvergence of expansions in a~multiple Fourier series and Fourier integral for summation over squares JO - Izvestiya. Mathematics PY - 1976 SP - 652 EP - 671 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a9/ LA - en ID - IM2_1976_10_3_a9 ER -
I. L. Bloshanskii. Equiconvergence of expansions in a~multiple Fourier series and Fourier integral for summation over squares. Izvestiya. Mathematics , Tome 10 (1976) no. 3, pp. 652-671. http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a9/