Equiconvergence of expansions in a~multiple Fourier series and Fourier integral for summation over squares
Izvestiya. Mathematics , Tome 10 (1976) no. 3, pp. 652-671.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work there are constructed a function $f(\overline x)\in L_1([-\pi,\pi]^2)$ such that the difference between the Fourier series expansion and the Fourier integral expansion for summation over squares diverges almost everywhere on $\{[-\pi,\pi]^2\}$, and a function $f(\overline x)\in L_p([-\pi,\pi]^N)$, $p>1$, $N\geqslant2$, for which the difference diverges at a point. Bibliography: 5 titles.
@article{IM2_1976_10_3_a9,
     author = {I. L. Bloshanskii},
     title = {Equiconvergence of expansions in a~multiple {Fourier} series and {Fourier} integral for summation over squares},
     journal = {Izvestiya. Mathematics },
     pages = {652--671},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a9/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
TI  - Equiconvergence of expansions in a~multiple Fourier series and Fourier integral for summation over squares
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 652
EP  - 671
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a9/
LA  - en
ID  - IM2_1976_10_3_a9
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%T Equiconvergence of expansions in a~multiple Fourier series and Fourier integral for summation over squares
%J Izvestiya. Mathematics 
%D 1976
%P 652-671
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a9/
%G en
%F IM2_1976_10_3_a9
I. L. Bloshanskii. Equiconvergence of expansions in a~multiple Fourier series and Fourier integral for summation over squares. Izvestiya. Mathematics , Tome 10 (1976) no. 3, pp. 652-671. http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a9/

[1] Bloshanskii I. L., “O ravnoskhodimosti razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168

[2] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[3] Zhak I. E., “O sopryazhennykh dvoinykh trigonometricheskikh ryadakh”, Matem. sb., 31:3 (1952), 469–484

[4] Tevzadze N. R., “O skhodimosti dvoinogo ryada Fure funktsii, summiruemoi s kvadratom”, Soobsch. AN GruzSSR, 58:2 (1970), 277–279 | MR | Zbl

[5] Sjolin P., “Convergence almost every where of certain singular integrals and multiple Fourier series”, Arkiw Math., 9:1 (1971), 65–90 | DOI | MR