Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1976_10_3_a9, author = {I. L. Bloshanskii}, title = {Equiconvergence of expansions in a~multiple {Fourier} series and {Fourier} integral for summation over squares}, journal = {Izvestiya. Mathematics }, pages = {652--671}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {1976}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a9/} }
TY - JOUR AU - I. L. Bloshanskii TI - Equiconvergence of expansions in a~multiple Fourier series and Fourier integral for summation over squares JO - Izvestiya. Mathematics PY - 1976 SP - 652 EP - 671 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a9/ LA - en ID - IM2_1976_10_3_a9 ER -
I. L. Bloshanskii. Equiconvergence of expansions in a~multiple Fourier series and Fourier integral for summation over squares. Izvestiya. Mathematics , Tome 10 (1976) no. 3, pp. 652-671. http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a9/
[1] Bloshanskii I. L., “O ravnoskhodimosti razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168
[2] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[3] Zhak I. E., “O sopryazhennykh dvoinykh trigonometricheskikh ryadakh”, Matem. sb., 31:3 (1952), 469–484
[4] Tevzadze N. R., “O skhodimosti dvoinogo ryada Fure funktsii, summiruemoi s kvadratom”, Soobsch. AN GruzSSR, 58:2 (1970), 277–279 | MR | Zbl
[5] Sjolin P., “Convergence almost every where of certain singular integrals and multiple Fourier series”, Arkiw Math., 9:1 (1971), 65–90 | DOI | MR