Equiconvergence of expansions in a multiple Fourier series and Fourier integral for summation over squares
Izvestiya. Mathematics, Tome 10 (1976) no. 3, pp. 652-671
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work there are constructed a function $f(\overline x)\in L_1([-\pi,\pi]^2)$ such that the difference between the Fourier series expansion and the Fourier integral expansion for summation over squares diverges almost everywhere on $\{[-\pi,\pi]^2\}$, and a function $f(\overline x)\in L_p([-\pi,\pi]^N)$, $p>1$, $N\geqslant2$, for which the difference diverges at a point. Bibliography: 5 titles.
@article{IM2_1976_10_3_a9,
author = {I. L. Bloshanskii},
title = {Equiconvergence of expansions in a~multiple {Fourier} series and {Fourier} integral for summation over squares},
journal = {Izvestiya. Mathematics},
pages = {652--671},
year = {1976},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a9/}
}
TY - JOUR AU - I. L. Bloshanskii TI - Equiconvergence of expansions in a multiple Fourier series and Fourier integral for summation over squares JO - Izvestiya. Mathematics PY - 1976 SP - 652 EP - 671 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a9/ LA - en ID - IM2_1976_10_3_a9 ER -
I. L. Bloshanskii. Equiconvergence of expansions in a multiple Fourier series and Fourier integral for summation over squares. Izvestiya. Mathematics, Tome 10 (1976) no. 3, pp. 652-671. http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a9/
[1] Bloshanskii I. L., “O ravnoskhodimosti razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168
[2] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[3] Zhak I. E., “O sopryazhennykh dvoinykh trigonometricheskikh ryadakh”, Matem. sb., 31:3 (1952), 469–484
[4] Tevzadze N. R., “O skhodimosti dvoinogo ryada Fure funktsii, summiruemoi s kvadratom”, Soobsch. AN GruzSSR, 58:2 (1970), 277–279 | MR | Zbl
[5] Sjolin P., “Convergence almost every where of certain singular integrals and multiple Fourier series”, Arkiw Math., 9:1 (1971), 65–90 | DOI | MR