The Weyl group of a~graded Lie algebra
Izvestiya. Mathematics , Tome 10 (1976) no. 3, pp. 463-495.

Voir la notice de l'article provenant de la source Math-Net.Ru

The action of the group $G_0$ of fixed points of a semisimple automorphism $\theta$ of a reductive algebraic group $G$ on an eigenspace $V$ of this automorphism in the Lie algebra $\mathfrak g$ of the group $G$ is considered. The linear groups which are obtained in this manner are called $\theta$-groups in this paper; they have certain properties which are analogous to properties of the adjoint group. In particular, the notions of Cartan subgroup and Weyl group can be introduced for $\theta$-groups. It is shown that the Weyl group is generated by complex reflections; from this it follows that the algebra of invariants of any $\theta$-group is free. Bibliography: 30 titles.
@article{IM2_1976_10_3_a2,
     author = {\`E. B. Vinberg},
     title = {The {Weyl} group of a~graded {Lie} algebra},
     journal = {Izvestiya. Mathematics },
     pages = {463--495},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a2/}
}
TY  - JOUR
AU  - È. B. Vinberg
TI  - The Weyl group of a~graded Lie algebra
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 463
EP  - 495
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a2/
LA  - en
ID  - IM2_1976_10_3_a2
ER  - 
%0 Journal Article
%A È. B. Vinberg
%T The Weyl group of a~graded Lie algebra
%J Izvestiya. Mathematics 
%D 1976
%P 463-495
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a2/
%G en
%F IM2_1976_10_3_a2
È. B. Vinberg. The Weyl group of a~graded Lie algebra. Izvestiya. Mathematics , Tome 10 (1976) no. 3, pp. 463-495. http://geodesic.mathdoc.fr/item/IM2_1976_10_3_a2/

[1] Borel A., “Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes”, Tôhoku Math. J., 13:2 (1961), 216–240 | MR | Zbl

[2] Weyl H., “Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen”, Math. Zeitschr., 23 (1925), 271–309 ; 24 (1926), 328–395 ; “Teoriya predstavlenii nepreryvnykh poluprostykh grupp pri pomoschi lineinykh preobrazovanii”, Uspekhi matem. nauk, 1938, no. 4, 201–257 | DOI | MR | Zbl | DOI | MR

[3] Vinberg E. B., “O lineinykh gruppakh, svyazannykh s periodicheskimi avtomorfizmami poluprostykh algebraicheskikh grupp”, Dokl. AN SSSR, 221:4 (1975), 767–770 | MR | Zbl

[4] Vinberg E. B., “O klassifikatsii nilpotentnykh elementov graduirovannykh algebr Li”, Dokl. AN SSSR, 225:4 (1975), 745–748 | MR | Zbl

[5] Vinberg E. B., Onischik A. L., Seminar po algebraicheskim gruppam i gruppam Li (1967–1968), MGU, 1968

[6] Vinberg E. B., Elashvili A. G., “Klassifikatsiya trivektorov 9-mernogo prostranstva”, Tr. sem. po vekt. i tenz. analizu, vyp. XVIII, 1976

[7] Dynkin E. B., “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30:2 (1952), 349–462 | MR | Zbl

[8] Cartan E., “Le principe de dualité et la théorie de groupes simples et semi-simples”, Bull. Sci. Math., 49 (1925), 361–374 | Zbl

[9] Cartan E., “La géométrie des groupes simples”, Ann. di Math., 4 (1927), 209–256 | DOI | MR | Zbl

[10] Cartan E., “Sur certaines formes riemanniennes remarquables des géométries à groupe fondamental simple”, Ann. Ecole Norm. Sup., 44 (1927), 345–467 | MR | Zbl

[11] Karte P., “Teoriya kharakterov poluprostykh algebr Li”, Teoriya algebr Li. Topologiya grupp Li (Seminar “Sofus Li”, 1954–1955), IL, M., 1962

[12] Kats V. G., “Prostye neprivodimye graduirovannye algebry Li konechnogo rosta”, Izv. AN SSSR. Ser. matem., 32 (1968), 1323–1367 | Zbl

[13] Kats V. G., “Avtomorfizmy konechnogo poryadka poluprostykh algebr Li”, Funkts. analiz, 3:3 (1969), 94–96 | MR | Zbl

[14] Kats V. G., “K voprosu ob opisanii prostranstva orbit lineinykh algebraicheskikh grupp”, Uspekhi matem. nauk, 30:6 (1975), 173–174 | MR | Zbl

[15] Coxeter H. S. M., “The product of generators of a finite group generated by reflections”, Duke Math. J., 18:4 (1951), 765–782 | DOI | MR | Zbl

[16] Kostant B., “Lie group representations on polynomial rings”, Amer. J. Math., 85:3 (1963), 327–402 | DOI | MR

[17] Kostant B., Rallis S., “Orbits and representations associated with symmetric spaces”, Amer. J. Math., 93:3 (1971), 753–809 | DOI | MR | Zbl

[18] Mumford D., Geometric invariant theory, Ergebnisse der Mathematik und ihre Grenzgebiete, bd. 34, Springer, 1965 ; Zh. Dedonne, Dzh. Kerrol, D. Mamford, Geometricheskaya teoriya invariantov, Mir, M., 1974 | MR | Zbl | MR

[19] Rashevskii P. K., “Teorema o svyaznosti podgruppy odnosvyaznoi gruppy Li, perestanovochnoi s kakim-libo ee avtomorfizmom”, Tr. Mosk. matem. ob-va, 30, 1974, 3–22

[20] Richardson R. W., “Conjugacy classes in Lie algebras and algebraic groups”, Ann. Math., 86:1 (1967), 1–15 | DOI | MR | Zbl

[21] Rosenlicht M., “Some basic theorems on algebraic groups”, Amer. J. Math., 78:2 (1956), 401–443 | DOI | MR | Zbl

[22] Springer T. A., “Regular elements of finite reflection groups”, Invent. Math., 25:2 (1974), 159–198 | DOI | MR | Zbl

[23] Springer T. A., Shteinberg R., “Klassy sopryazhennykh elementov”, Seminar po algebraicheskim gruppam, Mir, M., 1973 | MR | Zbl

[24] Sysoeva T. Yu., “Reduktivnye algebraicheskie lineinye gruppy, porozhdennye kvaziotrazheniyami”, Serdika, 1:3–4 (1975), 337–345 | MR | Zbl

[25] Harish-Chandra, “Spherical functions on a semi-simple Lie group. I”, Amer. J. Math., 80:2 (1958), 241–310 | DOI | MR | Zbl

[26] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[27] Chevalley C., “Invariants of finite groups generated by reflections”, Amer. J. Math., 77:4 (1955), 778–782 | DOI | MR | Zbl

[28] Shephard G. C., Todd J. A., “Finite unitary reflection groups”, Canad. J. Math., 6:2 (1954), 274–304 | MR | Zbl

[29] Elashvili A. G., “Kanonicheskii vid i statsionarnye podalgebry tochek obschego polozheniya dlya prostykh lineinykh grupp Li”, Funkts. analiz, 6:1 (1972), 51–62 | Zbl

[30] Elashvili A. G., “Statsionarnye podalgebry tochek obschego polozheniya dlya neprivodimykh lineinykh grupp Li”, Funkts. analiz, 6:2 (1972), 65–78 | Zbl