Parallel addition and parallel subtraction of operators
Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 351-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

The parallel sum $A:B$ of two invertible nonnegative operators $A$ and $B$ in a Hilbert space $\mathfrak H$ is the operator $(A^{-1}+B^{-1})^{-1}=A(A+B)^{-1}B$. This definition was extended to noninvertible operators by Anderson and Duffin for the case $\dim\mathfrak H\infty$ and by Fillmore and Williams for the general case. The investigation of parallel addition is continued in this paper; in particular, associativity is proved. Criteria are established for solvability of the equation $A:X=S$ with an unknown operator $X$ when $A$ and $S$ are given. In the case of solvability, the existence of a minimal solution $S\div A$, called the parallel difference, is proved. Parallel subtraction in a finite-dimensional space is considered in the last section. Bibliography: 11 titles.
@article{IM2_1976_10_2_a7,
     author = {\`E. L. Pekarev and Yu. L. Shmul'yan},
     title = {Parallel addition and parallel subtraction of operators},
     journal = {Izvestiya. Mathematics },
     pages = {351--370},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a7/}
}
TY  - JOUR
AU  - È. L. Pekarev
AU  - Yu. L. Shmul'yan
TI  - Parallel addition and parallel subtraction of operators
JO  - Izvestiya. Mathematics 
PY  - 1976
SP  - 351
EP  - 370
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a7/
LA  - en
ID  - IM2_1976_10_2_a7
ER  - 
%0 Journal Article
%A È. L. Pekarev
%A Yu. L. Shmul'yan
%T Parallel addition and parallel subtraction of operators
%J Izvestiya. Mathematics 
%D 1976
%P 351-370
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a7/
%G en
%F IM2_1976_10_2_a7
È. L. Pekarev; Yu. L. Shmul'yan. Parallel addition and parallel subtraction of operators. Izvestiya. Mathematics , Tome 10 (1976) no. 2, pp. 351-370. http://geodesic.mathdoc.fr/item/IM2_1976_10_2_a7/

[1] Anderson W. N., Duffin R. J., “Series and parallel addition of matrices”, J. Math. Anal. Appl., 26 (1969), 576–594 | DOI | MR | Zbl

[2] Fillmore P. A., Williams J. P., “On operator ranges”, Adv. Math., 7:3 (1971), 254–281 | DOI | MR | Zbl

[3] Shmulyan Yu. L., “Operatornyi integral Khellingera”, Matem. sb., 49(91):4 (1959), 381–430 | MR

[4] Douglas R. G., “On majorization, factorization and range inclusion of operators in Hilbert space”, Proc. Amer. Math. Soc., 17:2 (1966), 413–415 | DOI | MR | Zbl

[5] Ginzburg Yu. P., “O proektirovanii v gilbertovom prostranstve s bilineinoi metrikoi”, Dokl. AN SSSR, 139:4 (1961), 775–778 | MR | Zbl

[6] Kurosh A. G., Lektsii po obschei algebre, Nauka, M., 1973 | Zbl

[7] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[8] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR | Zbl

[9] Brodskii M. S, Treugolnye i zhordanovy predstavleniya lineinykh operatorov, Nauka, M., 1969 | MR

[10] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, IL, M., 1954

[11] Shmulyan Yu. L., “Privedenie operatornogo integrala Khellingera k integralu Lebega”, Izv. VUZ'ov, Matematika, 1963, no. 2(33), 164–175 | MR