Representation of completely $L$-superharmonic functions
Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1279-1296

Voir la notice de l'article provenant de la source Math-Net.Ru

An infinitely differentiable function $u(x)$ is said to be completely $L$-superharmonic if it satisfies the condition $(-1)^nL^nu(x)\geqslant0$, $n=0,1,2,\dots$, where $L$ is a second-order elliptic operator and belongs to a bounded domain with a sufficiently smooth boundary. An integral representation is given in this paper for such functions, and a study of their analytic nature is carried out. Bibliography: 17 titles.
@article{IM2_1975_9_6_a6,
     author = {M. V. Novitskii},
     title = {Representation of completely $L$-superharmonic functions},
     journal = {Izvestiya. Mathematics },
     pages = {1279--1296},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a6/}
}
TY  - JOUR
AU  - M. V. Novitskii
TI  - Representation of completely $L$-superharmonic functions
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 1279
EP  - 1296
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a6/
LA  - en
ID  - IM2_1975_9_6_a6
ER  - 
%0 Journal Article
%A M. V. Novitskii
%T Representation of completely $L$-superharmonic functions
%J Izvestiya. Mathematics 
%D 1975
%P 1279-1296
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a6/
%G en
%F IM2_1975_9_6_a6
M. V. Novitskii. Representation of completely $L$-superharmonic functions. Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1279-1296. http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a6/