Representation of completely $L$-superharmonic functions
Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1279-1296.

Voir la notice de l'article provenant de la source Math-Net.Ru

An infinitely differentiable function $u(x)$ is said to be completely $L$-superharmonic if it satisfies the condition $(-1)^nL^nu(x)\geqslant0$, $n=0,1,2,\dots$, where $L$ is a second-order elliptic operator and belongs to a bounded domain with a sufficiently smooth boundary. An integral representation is given in this paper for such functions, and a study of their analytic nature is carried out. Bibliography: 17 titles.
@article{IM2_1975_9_6_a6,
     author = {M. V. Novitskii},
     title = {Representation of completely $L$-superharmonic functions},
     journal = {Izvestiya. Mathematics },
     pages = {1279--1296},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a6/}
}
TY  - JOUR
AU  - M. V. Novitskii
TI  - Representation of completely $L$-superharmonic functions
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 1279
EP  - 1296
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a6/
LA  - en
ID  - IM2_1975_9_6_a6
ER  - 
%0 Journal Article
%A M. V. Novitskii
%T Representation of completely $L$-superharmonic functions
%J Izvestiya. Mathematics 
%D 1975
%P 1279-1296
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a6/
%G en
%F IM2_1975_9_6_a6
M. V. Novitskii. Representation of completely $L$-superharmonic functions. Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1279-1296. http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a6/

[1] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, M., 1957

[2] Bernshtein S. N., “Primechaniya k teorii regulyarno monotonnykh funktsii”, Izv. AN SSSR. Seriya matem., 16 (1952), 3–16 | Zbl

[3] Widder D., The Laplace Transform, Princeton, 1941 | MR | Zbl

[4] Boas R. P., “Representations for completely convex functions”, Amer. J. Math., 81:3 (1959), 709–714 | DOI | MR | Zbl

[5] “Sur les fonctions indefiniment dérivebles de plusieurs variables dont les laplaciens successifs ont des signes alternés”, Duke Math. J., 14 (1947), 143–149, Lelong P. | DOI | MR

[6] Novitskii M. V., “O vpolne vypuklykh funktsiyakh”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, no. 17, Kharkovsk. un-t, 1973, 99–105

[7] Oleinik O. A., “O svoistvakh reshenii nekotorykh kraevykh zadach dlya uravnenii ellipticheskogo tipa”, Matem. sb., 30(72):3 (1952), 695–702 | MR | Zbl

[8] Agmon S., Douglis A. and Nirenberg L., “Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions, I”, Comm. Pure Appl. Math., 12 (1959), 623–727 | DOI | MR | Zbl

[9] Krasnoselskii M. A., Sobolevskii P. E., “O neotritsatelnosti sobstvennoi funktsii pervoi kraevoi zadachi dlya ellipticheskogo uravneniya”, Uspekhi matem. nauk, 16 (1961), 197–199 | MR

[10] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl

[11] Ilin V. A., Shishmarev I. A., “Ravnomernye v zamknutoi oblasti otsenki dlya sobstvennykh funktsii ellipticheskogo operatora i ikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 24 (1960), 883–896

[12] Felps R., Lektsiya o teoremakh Shoke, Mir, M., 1968

[13] Danford N., Shvarts D. Zh., Lineinye operatory, II, Mir, M., 1966

[14] Nelson E., “Analytic vectors”, Ann. Math., 70:3 (1959), 572–615 ; E. Nelson, “Analiticheskie vektory”, Matematika, 6:3 (1962), 89–131 | DOI | MR | Zbl

[15] Ladyzhenskaya A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[16] Shur M. G., “Granitsa Martina dlya lineinogo ellipticheskogo operatora vtorogo poryadka”, Izv. AN SSSR. Ser. matem., 27 (1963), 45–60 | Zbl

[17] Brelo M., “O granitse Martina”, lektsii, prochitannye v universitete Karolina v aprele–mae 1962 g., Matematika, 9:5 (1965), 136–155