On homogeneous vector bundles and groups of diffeomorphism of compact homogeneous spaces
Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1203-1212.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a homogeneous space of a compact Lie group $K$. We denote by $D_0(M)$ the connected component of the identity in the group of all $C^\infty$-diffeomorphisms of $M$. In this paper it is proved that $D_0(M)$ and some of its closed subgroups are finitely-generated topological groups. It is also proved that the topological $K$-modules arising from the action of the group $K$ on the spaces of $C^k$-sections of homogeneous vector bundles over $M$ are noetherian. Bibliography: 13 titles.
@article{IM2_1975_9_6_a3,
     author = {A. M. Lukatskii},
     title = {On homogeneous vector bundles and groups of diffeomorphism of compact homogeneous spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1203--1212},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a3/}
}
TY  - JOUR
AU  - A. M. Lukatskii
TI  - On homogeneous vector bundles and groups of diffeomorphism of compact homogeneous spaces
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 1203
EP  - 1212
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a3/
LA  - en
ID  - IM2_1975_9_6_a3
ER  - 
%0 Journal Article
%A A. M. Lukatskii
%T On homogeneous vector bundles and groups of diffeomorphism of compact homogeneous spaces
%J Izvestiya. Mathematics 
%D 1975
%P 1203-1212
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a3/
%G en
%F IM2_1975_9_6_a3
A. M. Lukatskii. On homogeneous vector bundles and groups of diffeomorphism of compact homogeneous spaces. Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1203-1212. http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a3/

[1] Lukatskii A. M., “Algebry vektornykh polei i gruppy diffeomorfizmov kompaktnykh mnogoobrazii”, Funkts. analiz, 8:2 (1974), 87–88 | MR

[2] Lukatskii A. M., “O sistemakh obrazuyuschikh v gruppakh diffeomorfizmov kompaktnykh mnogoobrazii”, Dokl. AN SSSR, 220:2 (1975), 285–288

[3] Olshanskii G. I., “O teoreme dvoistvennosti Frobeniusa”, Funkts. analiz, 3:4 (1969), 49–68 | MR

[4] Onischik A. L., “Ob odnorodnykh vektornykh rassloeniyakh”, Uspekhi matem. nauk, 24:3 (1969), 231–232 | MR | Zbl

[5] Onischik A. L., “Kompleksnye obolochki kompaktnykh odnorodnykh prostranstv”, Dokl. AN SSSR, 130:4 (1960), 726–729 | Zbl

[6] Palais S., Stewart T. E., “The cohomology of differentiable transformation groups”, Amer. J. Math., 83:4 (1961), 623–644 | DOI | MR | Zbl

[7] Ulam S., Nereshennye matematicheskie zadachi, Mir, M., 1964

[8] Ulam S., Schreier J., “Sur le nombre des generateurs d'un groupe topologique compact et connexe”, Fundam. Math., 24 (1935), 302–304 | Zbl

[9] Leslie J. A., “On a differential structure for the group of diffeomorphisms”, Topology, 6:2 (1967), 263–271 | DOI | MR | Zbl

[10] Leslie J. A., “A remark on the group of automorphisms of a foliation having a denase leaf”, J. Diff. Geom., 7 (1972), 597–601 | MR | Zbl

[11] Mather J. N., “Simplicity of certain groups of diffeomorphisms”, Bul. Amer. Math. Soc., 80:2 (1974), 271–273 | DOI | MR | Zbl

[12] Thurston W., “Foliations and groups of diffeomorphisms”, Bul. Amer. Math. Soc., 80:2 (1974), 304–307 | DOI | MR | Zbl

[13] Tits J., “Free subgroups in linear groups”, J. Algebra, 20:2 (1972), 250–270 | DOI | MR | Zbl