On homogeneous vector bundles and groups of diffeomorphism of compact homogeneous spaces
Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1203-1212

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a homogeneous space of a compact Lie group $K$. We denote by $D_0(M)$ the connected component of the identity in the group of all $C^\infty$-diffeomorphisms of $M$. In this paper it is proved that $D_0(M)$ and some of its closed subgroups are finitely-generated topological groups. It is also proved that the topological $K$-modules arising from the action of the group $K$ on the spaces of $C^k$-sections of homogeneous vector bundles over $M$ are noetherian. Bibliography: 13 titles.
@article{IM2_1975_9_6_a3,
     author = {A. M. Lukatskii},
     title = {On homogeneous vector bundles and groups of diffeomorphism of compact homogeneous spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1203--1212},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a3/}
}
TY  - JOUR
AU  - A. M. Lukatskii
TI  - On homogeneous vector bundles and groups of diffeomorphism of compact homogeneous spaces
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 1203
EP  - 1212
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a3/
LA  - en
ID  - IM2_1975_9_6_a3
ER  - 
%0 Journal Article
%A A. M. Lukatskii
%T On homogeneous vector bundles and groups of diffeomorphism of compact homogeneous spaces
%J Izvestiya. Mathematics 
%D 1975
%P 1203-1212
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a3/
%G en
%F IM2_1975_9_6_a3
A. M. Lukatskii. On homogeneous vector bundles and groups of diffeomorphism of compact homogeneous spaces. Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1203-1212. http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a3/