Hereditary and intermediate reflexivity of $W^*$-algebras
Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1189-1201

Voir la notice de l'article provenant de la source Math-Net.Ru

An operator algebra $R$ is reflexive if every operator which leaves invariant all $R$-invariant subspaces belongs to $R$. The notion of reflexivity can be extended to linear spaces of operators. An operator algebra is said to be hereditarily reflexive if all its weakly closed subspaces are reflexive. This article presents a criterion for the hereditary reflexivity of a $W^*$-algebra, and also examines the more general problem of conditions for the intermediate reflexivity of a pair of $W^*$-algebras. A number of necessary conditions and sufficient conditions for intermediate reflexivity are also obtained. Bibliography: 20 titles.
@article{IM2_1975_9_6_a2,
     author = {A. I. Loginov and V. S. Shulman},
     title = {Hereditary and intermediate reflexivity of $W^*$-algebras},
     journal = {Izvestiya. Mathematics },
     pages = {1189--1201},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a2/}
}
TY  - JOUR
AU  - A. I. Loginov
AU  - V. S. Shulman
TI  - Hereditary and intermediate reflexivity of $W^*$-algebras
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 1189
EP  - 1201
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a2/
LA  - en
ID  - IM2_1975_9_6_a2
ER  - 
%0 Journal Article
%A A. I. Loginov
%A V. S. Shulman
%T Hereditary and intermediate reflexivity of $W^*$-algebras
%J Izvestiya. Mathematics 
%D 1975
%P 1189-1201
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a2/
%G en
%F IM2_1975_9_6_a2
A. I. Loginov; V. S. Shulman. Hereditary and intermediate reflexivity of $W^*$-algebras. Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1189-1201. http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a2/