Hereditary and intermediate reflexivity of $W^*$-algebras
Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1189-1201.

Voir la notice de l'article provenant de la source Math-Net.Ru

An operator algebra $R$ is reflexive if every operator which leaves invariant all $R$-invariant subspaces belongs to $R$. The notion of reflexivity can be extended to linear spaces of operators. An operator algebra is said to be hereditarily reflexive if all its weakly closed subspaces are reflexive. This article presents a criterion for the hereditary reflexivity of a $W^*$-algebra, and also examines the more general problem of conditions for the intermediate reflexivity of a pair of $W^*$-algebras. A number of necessary conditions and sufficient conditions for intermediate reflexivity are also obtained. Bibliography: 20 titles.
@article{IM2_1975_9_6_a2,
     author = {A. I. Loginov and V. S. Shulman},
     title = {Hereditary and intermediate reflexivity of $W^*$-algebras},
     journal = {Izvestiya. Mathematics },
     pages = {1189--1201},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a2/}
}
TY  - JOUR
AU  - A. I. Loginov
AU  - V. S. Shulman
TI  - Hereditary and intermediate reflexivity of $W^*$-algebras
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 1189
EP  - 1201
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a2/
LA  - en
ID  - IM2_1975_9_6_a2
ER  - 
%0 Journal Article
%A A. I. Loginov
%A V. S. Shulman
%T Hereditary and intermediate reflexivity of $W^*$-algebras
%J Izvestiya. Mathematics 
%D 1975
%P 1189-1201
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a2/
%G en
%F IM2_1975_9_6_a2
A. I. Loginov; V. S. Shulman. Hereditary and intermediate reflexivity of $W^*$-algebras. Izvestiya. Mathematics , Tome 9 (1975) no. 6, pp. 1189-1201. http://geodesic.mathdoc.fr/item/IM2_1975_9_6_a2/

[1] Davis C., Radjavi H., Rosenthal P., “On operator algebras and invariant subspaces”, Can. J. Math., 21:5 (1969), 1178–1181 | MR | Zbl

[2] Deddens J. A., “Reflexive operators”, Indiana Univ. Math. J., 20:10 (1971), 887–889 | DOI | MR | Zbl

[3] Dixmier J., Les algèbres d'operateurs dans l'espace Hilbertian, Gauthier-Villars, Paris, 1969

[4] Goodman R., “Invariant subspaces for normal operators”, J. Math. and Mech., 15:1 (1966), 123–128 | MR | Zbl

[5] Halpern H., “Module homomorphisms of a von Neumann algebra into its center”, Trans. Amer. Math. Soc., 140 (1969), 183–193 | DOI | MR

[6] Hoover T. B., “Operator algebras with reducing invariant subspaces”, Pacif. J. Math., 44:1 (1973), 183–179 | MR

[7] Kadison R. V., “Normalcy in operator algebras”, Duke Math. J., 29 (1962), 459–464 | DOI | MR | Zbl

[8] Kovács J., Szücs J., “Ergodic type theorems in von Neumann algebras”, Acta Sci. Math., 27:3,4 (1966), 233–246 | MR | Zbl

[9] Lambert A., “Strictly cyclic operator algebras”, Pacif. J. Math., 39:3 (1971), 717–726 | MR | Zbl

[10] Loginov A. I., Shulman V. S., “O teoreme Sarazona i gipoteze Radzhavi–Rozentalya”, Dokl. AN SSSR, 205:2 (1972), 284–285 | MR | Zbl

[11] Loginov A. I., Shulman V. S., “O nasledstvennoi i promezhutochnoi refleksivnosti $W^*$-algebr”, Dokl. AN SSSR, 12:4 (1973), 34–36

[12] Radjavi H., Rosenthal P., “On invariant subspaces and reflexive algebras”, Amer. J. Math., 51:1 (1969), 683–692 | DOI | MR

[13] Radjavi H., Rosenthal P., “A sufficient condition that an operator algebra be selfadjoint”, Can. J. Math., 23:4 (1971), 558–597 | MR

[14] Sakai S., $C^*$-algebras and $W^*$-algebras, Springer-Verlag, 1972 | Zbl

[15] Sarason D. A., “Invariant subspaces and unstarred operator algebras”, Pacif. J. Math., 17 (1966), 511–517 | MR | Zbl

[16] Stormer E., “States and invariant maps of operator algebras”, J. Funct. Anal., 5 (1970), 44–65 | DOI | MR

[17] Shulman V. S., “O refleksivnykh operatornykh algebrakh”, Matem. sb., 87(129):2 (1972), 179–187 | MR | Zbl

[18] Shulman V. T., “Operatory umnozheniya v $C^*$-algebrakh i zadacha o refleksivnosti algebr, soderzhaschikh m.a.s.a.”, Funkts. analiz i ego prilozheniya, 8:1 (1974), 92–93 | MR

[19] Tomiyama J., “On some types of maximal abelian subalgebras”, J. Funct. Anal., 10:4 (1972), 373–386 | DOI | MR | Zbl

[20] Arveson W., “Operator algebras and invariant subspaces”, Ann. Math., 100:3 (1974), 433–532 | DOI | MR | Zbl