Two-valued formal groups. Algebraic theory and applications to cobor\-dism.~I
Izvestiya. Mathematics , Tome 9 (1975) no. 5, pp. 987-1006.

Voir la notice de l'article provenant de la source Math-Net.Ru

An axiomatic definition is given for the notion of a two-valued formal group. The coalgebra and the generalized translation associated with a two-valued formal group are then defined and studied. A complete classification is obtained for two-valued formal groups over $Q$-algebras. Bibliography: 11 titles.
@article{IM2_1975_9_5_a3,
     author = {V. M. Buchstaber},
     title = {Two-valued formal groups. {Algebraic} theory and applications to {cobor\-dism.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {987--1006},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a3/}
}
TY  - JOUR
AU  - V. M. Buchstaber
TI  - Two-valued formal groups. Algebraic theory and applications to cobor\-dism.~I
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 987
EP  - 1006
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a3/
LA  - en
ID  - IM2_1975_9_5_a3
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%T Two-valued formal groups. Algebraic theory and applications to cobor\-dism.~I
%J Izvestiya. Mathematics 
%D 1975
%P 987-1006
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a3/
%G en
%F IM2_1975_9_5_a3
V. M. Buchstaber. Two-valued formal groups. Algebraic theory and applications to cobor\-dism.~I. Izvestiya. Mathematics , Tome 9 (1975) no. 5, pp. 987-1006. http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a3/

[1] Bukhshtaber V. M., Novikov S. P., “Formalnye gruppy, stepennye sistemy i operatory Adamsa”, Matem. sb., 84(126):1 (1971), 81–118 | MR | Zbl

[2] Bukhshtaber V. M., “Dvuznachnye formalnye gruppy, nekotorye prilozheniya k kobordizmam”, Uspekhi matem. nauk, 26:3 (1971), 195–196 | MR | Zbl

[3] Bukhshtaber V. M., Mischenko A. S., Novikov S. P., “Formalnye gruppy i ikh rol v apparate algebraicheskoi topologii”, Uspekhi matem. nauk, 26:2 (1971), 131–154 | MR | Zbl

[4] Bukhshtaber V. M., “Klassifikatsiya dvuznachnykh formalnykh grupp”, Uspekhi matem. nauk, 28:3 (1973), 173–174 | MR | Zbl

[5] Bukhshtaber V. M., “Novye metody v teorii kobordizmov”, Dobavlenie k knige: R. Stong, Zametki po teorii kobordizmov, Mir, M., 1973

[6] Dedonne Zh., “Differentsialnoe ischislenie v polyakh kharakteristik $p>0$”, Mezhdunarodnyi matem. kongr. v Amsterdame (1954 g.), Fizmatgiz, M., 1961, 134–150

[7] Lazard M., “Sur les groupes de Lie formels a un parametre”, Bull. Soc. Math. France, 83 (1955), 251–274 | MR | Zbl

[8] Levitan B. M., Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973 | MR | Zbl

[9] Novikov S. P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Seriya matem., 31 (1967), 855–951 | Zbl

[10] Quillen D., “On the formal group law of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75:6 (1969), 1293–1298 | DOI | MR | Zbl

[11] Quillen D., “Elementary proofs of some results of cobordism theory using Streenrod operations”, Advances in Math., 7 (1971), 29–56 | DOI | MR | Zbl