Complex homogeneous spaces of semisimple Lie groups of the first category
Izvestiya. Mathematics , Tome 9 (1975) no. 5, pp. 939-949

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a connected, real, semisimple Lie group of the first category. In this paper are found all the connected closed subgroups $L$ in $G$ which are such that there exists a complex structure on $M=G/L$, invariant under the action of $G$; and also a description is given of all such structures on $M$. It turns out that the complex homogeneous spaces $M$ thus obtained are covering spaces of homogeneous domains in compact complex homogeneous spaces $\widetilde M$. If $G$ is a linear group, then the manifolds $M$ are homogeneous domains in $\widetilde M$; moreover the fibers of the Tits fibration of $\widetilde M$ can only lie entirely in $M$, and the set of all fibers in $M$ forms a homogeneous domain in the base space of the corresponding Tits fibration. Bibliography: 16 titles.
@article{IM2_1975_9_5_a1,
     author = {F. M. Malyshev},
     title = {Complex homogeneous spaces of semisimple {Lie} groups of the first category},
     journal = {Izvestiya. Mathematics },
     pages = {939--949},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a1/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - Complex homogeneous spaces of semisimple Lie groups of the first category
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 939
EP  - 949
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a1/
LA  - en
ID  - IM2_1975_9_5_a1
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T Complex homogeneous spaces of semisimple Lie groups of the first category
%J Izvestiya. Mathematics 
%D 1975
%P 939-949
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a1/
%G en
%F IM2_1975_9_5_a1
F. M. Malyshev. Complex homogeneous spaces of semisimple Lie groups of the first category. Izvestiya. Mathematics , Tome 9 (1975) no. 5, pp. 939-949. http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a1/