Complex homogeneous spaces of semisimple Lie groups of the first category
Izvestiya. Mathematics , Tome 9 (1975) no. 5, pp. 939-949.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a connected, real, semisimple Lie group of the first category. In this paper are found all the connected closed subgroups $L$ in $G$ which are such that there exists a complex structure on $M=G/L$, invariant under the action of $G$; and also a description is given of all such structures on $M$. It turns out that the complex homogeneous spaces $M$ thus obtained are covering spaces of homogeneous domains in compact complex homogeneous spaces $\widetilde M$. If $G$ is a linear group, then the manifolds $M$ are homogeneous domains in $\widetilde M$; moreover the fibers of the Tits fibration of $\widetilde M$ can only lie entirely in $M$, and the set of all fibers in $M$ forms a homogeneous domain in the base space of the corresponding Tits fibration. Bibliography: 16 titles.
@article{IM2_1975_9_5_a1,
     author = {F. M. Malyshev},
     title = {Complex homogeneous spaces of semisimple {Lie} groups of the first category},
     journal = {Izvestiya. Mathematics },
     pages = {939--949},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a1/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - Complex homogeneous spaces of semisimple Lie groups of the first category
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 939
EP  - 949
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a1/
LA  - en
ID  - IM2_1975_9_5_a1
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T Complex homogeneous spaces of semisimple Lie groups of the first category
%J Izvestiya. Mathematics 
%D 1975
%P 939-949
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a1/
%G en
%F IM2_1975_9_5_a1
F. M. Malyshev. Complex homogeneous spaces of semisimple Lie groups of the first category. Izvestiya. Mathematics , Tome 9 (1975) no. 5, pp. 939-949. http://geodesic.mathdoc.fr/item/IM2_1975_9_5_a1/

[1] Araki Sh., “Kornevye sistemy i lokalnaya klassifikatsiya neprivodimykh simmetricheskikh prostranstv”, Matematika, 10:1 (1966), 90–126 | MR

[2] Berezin F. A., Pyatetskii-Shapiro I. I., “Odnorodnye rasshireniya kompleksnogo prostranstva”, Dokl. AN SSSR, 99:6 (1954), 889–892 | MR | Zbl

[3] Dynkin E. B., Onischik A. L., “Kompaktnye gruppy Li v tselom”, Uspekhi matem. nauk, 10:4 (1955), 3–74 | MR | Zbl

[4] Karpelevich F. I., “O nepoluprostykh maksimalnykh podalgebrakh poluprostykh algebr Li”, Dokl. AN SSSR, 76:6 (1951), 775–778 | MR | Zbl

[5] Onischik A. L., “Poluprostye razlozheniya poluprostykh algebr Li”, Dokl. AN SSSR, 149:5 (1963), 1033–1036 | Zbl

[6] Onischik A. L., “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh, II”, Matem. sb., 74(116) (1967), 398–416 | Zbl

[7] Onischik A. L., “Razlozheniya reduktivnykh grupp Li”, Matem. sb., 80:4 (1969), 553–599 | Zbl

[8] Syugiura N., “Klassy sopryazhennykh kartanovskikh podalgebr v poluprostoi veschestvennoi algebre Li”, Matematika, 13:3 (1969), 101–155 | MR

[9] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1965

[10] Shevalle K., Teoriya grupp Li, IL, M., 1948

[11] Borel A., “Kahlerian coset spaces of semisimply Lie groups”, Proc. Nat. Ac. Sci. USA, 40:12 (1954), 1147–1151 | DOI | MR | Zbl

[12] Borel A., Hirzebruch F., “Characteristic classes and homogeneous spaces, I”, Amer. J. Math., 80:2 (1958), 458–538 | DOI | MR

[13] Koszul J., “Sur la forme Hermitienne canonique des espaces homogenesus complexes”, Canadian J. Math., 7:4 (1955), 562–576 | MR | Zbl

[14] Montgomery D., “Simply connected homogeneous spaces”, Proc. Amer. Math. Soc., 1:4 (1950), 467–469 | DOI | MR | Zbl

[15] Wang H. C., “Closed manifold with homogeneous complex structure”, Amer. J. Math., 76:1 (1954), 1–32 | DOI | MR | Zbl

[16] Wolf J. A., “The achion of a real semisimple groupen a complex flag manifold, I”, Bull. Amer. Math. Soc., 75:6 (1969), 1121–1237 | DOI | MR | Zbl