Theorems on lifting vector-valued functions
Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 861-875
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T$ be a set. Let $X$ and $Y$ be locally convex spaces, $L(X,Y)$ the space of linear maps of $X$ into $Y$, and $K\colon T\to L(X,Y)$ some map. A lifting theorem is an assertion that for each $g\colon T\to Y$ from some class of maps there exists a map $f\colon T\to X$, of the same class, such that $K(t)f(t)=g(t)$ for all $t\in T$. In this paper lifting theorems are proved for the classes of continuous, continuously differentiable a finite number of times, and infinitely differential maps.
Bibliography: 7 items.
@article{IM2_1975_9_4_a8,
author = {A. Kurato and M. P. Kats},
title = {Theorems on lifting vector-valued functions},
journal = {Izvestiya. Mathematics },
pages = {861--875},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a8/}
}
A. Kurato; M. P. Kats. Theorems on lifting vector-valued functions. Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 861-875. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a8/