Theorems on lifting vector-valued functions
Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 861-875.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T$ be a set. Let $X$ and $Y$ be locally convex spaces, $L(X,Y)$ the space of linear maps of $X$ into $Y$, and $K\colon T\to L(X,Y)$ some map. A lifting theorem is an assertion that for each $g\colon T\to Y$ from some class of maps there exists a map $f\colon T\to X$, of the same class, such that $K(t)f(t)=g(t)$ for all $t\in T$. In this paper lifting theorems are proved for the classes of continuous, continuously differentiable a finite number of times, and infinitely differential maps. Bibliography: 7 items.
@article{IM2_1975_9_4_a8,
     author = {A. Kurato and M. P. Kats},
     title = {Theorems on lifting vector-valued functions},
     journal = {Izvestiya. Mathematics },
     pages = {861--875},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a8/}
}
TY  - JOUR
AU  - A. Kurato
AU  - M. P. Kats
TI  - Theorems on lifting vector-valued functions
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 861
EP  - 875
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a8/
LA  - en
ID  - IM2_1975_9_4_a8
ER  - 
%0 Journal Article
%A A. Kurato
%A M. P. Kats
%T Theorems on lifting vector-valued functions
%J Izvestiya. Mathematics 
%D 1975
%P 861-875
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a8/
%G en
%F IM2_1975_9_4_a8
A. Kurato; M. P. Kats. Theorems on lifting vector-valued functions. Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 861-875. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a8/

[1] Bartl R. Dzh., Greivs L. M., “Mappings between function spaces”, Trans. Amer. Math. Soc., 72 (1952), 400–413 | DOI | MR | Zbl

[2] Grotendik A., “Resume des resultats essentiels dans la théoreme des produits tensoriels topologiques et des espaces nucléaires”, Ann. Inst. Fourier, IV (1952), 84, snoska

[3] Maikl E., “Three mapping theorems”, Proc. Amer. Math. Soc., 15:3 (1964), 410–415 | DOI | MR

[4] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967 | MR

[5] Robertson A. P., Robertson V. Dzh., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[6] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | Zbl

[7] Ganning R., Rossi X., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR