On $\omega$-limit sets of a~cylindrical cascade
Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 831-849.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the transformation $$ T_{\alpha,f}(x,y)=((x+\alpha)\operatorname{mod}1,y+f(x)), $$ be defined on the cylinder $\mathbf S^1\times\mathbf R$, where $\alpha$ is an irrational number and $f(x)$ is a continuous function on $\mathbf S^1$, with $\int_{\mathbf S^1}f(x)dx=0$. Let $\mathbf L$ be the set of numbers $y$ for which is an $\omega$-limit point for the trajectory of the point $(x_0,y_0)$. In this paper the classification of the sets $\mathbf L$ is carried out and suitable examples are constructed. Bibliography: 9 items.
@article{IM2_1975_9_4_a6,
     author = {A. B. Krygin},
     title = {On $\omega$-limit sets of a~cylindrical cascade},
     journal = {Izvestiya. Mathematics },
     pages = {831--849},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a6/}
}
TY  - JOUR
AU  - A. B. Krygin
TI  - On $\omega$-limit sets of a~cylindrical cascade
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 831
EP  - 849
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a6/
LA  - en
ID  - IM2_1975_9_4_a6
ER  - 
%0 Journal Article
%A A. B. Krygin
%T On $\omega$-limit sets of a~cylindrical cascade
%J Izvestiya. Mathematics 
%D 1975
%P 831-849
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a6/
%G en
%F IM2_1975_9_4_a6
A. B. Krygin. On $\omega$-limit sets of a~cylindrical cascade. Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 831-849. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a6/

[1] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M., L., 1947

[2] Shnirelman L. G., “Primer odnogo preobrazovaniya ploskosti”, Izv. Donskogo politekhnicheskogo instituta v Novocherkasske, nauchn. otd., fiz.-matem. chast, 14 (1930), 64–74

[3] Besicovitch A. S., “A problem on topological transformations of the plane”, Fund. Math., 28 (1937), 61–65 | Zbl

[4] Besicovitch A. S., “A problem on topological transformations of the plane, II”, Proc. Cambr. Phil. Soc., 47:1 (1951), 38–45 | DOI | MR | Zbl

[5] Gottschalk W. H., “Orbit-closure decompositions and almost periodicity properties”, Bull Amer. Math. Soc., 50:12 (1944), 915–919 | DOI | MR | Zbl

[6] Hedlund G. A., “A class of transformations of the plane”, Proc. Cambr. Phil. Soc., 51:4 (1955), 554–564 | DOI | MR | Zbl

[7] Khinchin A. Ya., Tsepnye drobi, Fizmatgiz, M., 1961 | MR

[8] Anosov D. V., “Ob additivnom funktsionalnom gomologicheskom uravnenii, svyazannom s ergodicheskim povorotom okruzhnosti”, Izv. AN SSSR. Ser. matem., 37 (1973), 1259–1274 | MR | Zbl

[9] Sidorov E. A., “Ob odnom klasse minimalnykh mnozhestv”, Uspekhi matem. nauk, 28:4 (1973), 225–226 | MR | Zbl