On the number of invartiant measures for flows on orientable surfaces
Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 813-830.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. For any natural numbers $n$ and $k$, $n\geqslant k$, on a two-dimensional orientable compact manifold without boundary of class $C^\infty$ and genus there exists a topologically transitive flow of class $C^\infty$ having $2n-2$ fixed points and exactly $k$ invariant ergodic normalized measures such that the measure of each trajectory is equal to zero. Bibliography: 3 items.
@article{IM2_1975_9_4_a5,
     author = {E. A. Sataev},
     title = {On the number of invartiant measures for flows on orientable surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {813--830},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a5/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - On the number of invartiant measures for flows on orientable surfaces
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 813
EP  - 830
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a5/
LA  - en
ID  - IM2_1975_9_4_a5
ER  - 
%0 Journal Article
%A E. A. Sataev
%T On the number of invartiant measures for flows on orientable surfaces
%J Izvestiya. Mathematics 
%D 1975
%P 813-830
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a5/
%G en
%F IM2_1975_9_4_a5
E. A. Sataev. On the number of invartiant measures for flows on orientable surfaces. Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 813-830. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a5/

[1] Katok A. B., Stepin A. M., “Approksimatsii v ergodicheskoi teorii”, Uspekhi matem. nauk, XXII:5 (1967), 81–106 | MR

[2] Katok A. B., “Invariantnye mery na orientiruemykh poverkhnostyakh”, Dokl. AN SSSR, 211:4 (1973), 775–778 | MR | Zbl

[3] Blokhinn A. A., “Gladkie ergodicheskie potoki na poverkhnostyakh”, Tr. Mosk. matem. ob-va, 27, 1972, 113–128