On the number of invartiant measures for flows on orientable surfaces
Izvestiya. Mathematics, Tome 9 (1975) no. 4, pp. 813-830
Cet article a éte moissonné depuis la source Math-Net.Ru
The following theorem is proved. For any natural numbers $n$ and $k$, $n\geqslant k$, on a two-dimensional orientable compact manifold without boundary of class $C^\infty$ and genus there exists a topologically transitive flow of class $C^\infty$ having $2n-2$ fixed points and exactly $k$ invariant ergodic normalized measures such that the measure of each trajectory is equal to zero. Bibliography: 3 items.
@article{IM2_1975_9_4_a5,
author = {E. A. Sataev},
title = {On the number of invartiant measures for flows on orientable surfaces},
journal = {Izvestiya. Mathematics},
pages = {813--830},
year = {1975},
volume = {9},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a5/}
}
E. A. Sataev. On the number of invartiant measures for flows on orientable surfaces. Izvestiya. Mathematics, Tome 9 (1975) no. 4, pp. 813-830. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a5/
[1] Katok A. B., Stepin A. M., “Approksimatsii v ergodicheskoi teorii”, Uspekhi matem. nauk, XXII:5 (1967), 81–106 | MR
[2] Katok A. B., “Invariantnye mery na orientiruemykh poverkhnostyakh”, Dokl. AN SSSR, 211:4 (1973), 775–778 | MR | Zbl
[3] Blokhinn A. A., “Gladkie ergodicheskie potoki na poverkhnostyakh”, Tr. Mosk. matem. ob-va, 27, 1972, 113–128