On the number of invartiant measures for flows on orientable surfaces
Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 813-830
Voir la notice de l'article provenant de la source Math-Net.Ru
The following theorem is proved. For any natural numbers $n$ and $k$, $n\geqslant k$, on a two-dimensional orientable compact manifold without boundary of class $C^\infty$ and genus there exists a topologically transitive flow of class $C^\infty$ having $2n-2$ fixed points and exactly $k$ invariant ergodic normalized measures such that the measure of each trajectory is equal to zero.
Bibliography: 3 items.
@article{IM2_1975_9_4_a5,
author = {E. A. Sataev},
title = {On the number of invartiant measures for flows on orientable surfaces},
journal = {Izvestiya. Mathematics },
pages = {813--830},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a5/}
}
E. A. Sataev. On the number of invartiant measures for flows on orientable surfaces. Izvestiya. Mathematics , Tome 9 (1975) no. 4, pp. 813-830. http://geodesic.mathdoc.fr/item/IM2_1975_9_4_a5/