Spectral properties of modular operators and the asymptotic ratio set
Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 599-619
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we study the asymptotic ratio set (an invariant for von Neumann algebras introduced by H. Araki and E. J. Woods) with the aid of spectral properties of modular operators of the von Neumann algebra. We give an equivalent description of this set in terms of modular operators and indicate a constructive method for its evaluation.
Bibliography: 19 items.
@article{IM2_1975_9_3_a7,
author = {V. Ya. Golodets},
title = {Spectral properties of modular operators and the asymptotic ratio set},
journal = {Izvestiya. Mathematics },
pages = {599--619},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a7/}
}
V. Ya. Golodets. Spectral properties of modular operators and the asymptotic ratio set. Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 599-619. http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a7/