Spectral properties of modular operators and the asymptotic ratio set
Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 599-619.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we study the asymptotic ratio set (an invariant for von Neumann algebras introduced by H. Araki and E. J. Woods) with the aid of spectral properties of modular operators of the von Neumann algebra. We give an equivalent description of this set in terms of modular operators and indicate a constructive method for its evaluation. Bibliography: 19 items.
@article{IM2_1975_9_3_a7,
     author = {V. Ya. Golodets},
     title = {Spectral properties of modular operators and the asymptotic ratio set},
     journal = {Izvestiya. Mathematics },
     pages = {599--619},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a7/}
}
TY  - JOUR
AU  - V. Ya. Golodets
TI  - Spectral properties of modular operators and the asymptotic ratio set
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 599
EP  - 619
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a7/
LA  - en
ID  - IM2_1975_9_3_a7
ER  - 
%0 Journal Article
%A V. Ya. Golodets
%T Spectral properties of modular operators and the asymptotic ratio set
%J Izvestiya. Mathematics 
%D 1975
%P 599-619
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a7/
%G en
%F IM2_1975_9_3_a7
V. Ya. Golodets. Spectral properties of modular operators and the asymptotic ratio set. Izvestiya. Mathematics , Tome 9 (1975) no. 3, pp. 599-619. http://geodesic.mathdoc.fr/item/IM2_1975_9_3_a7/

[1] Naimark M. A., Normirovannye koltsa, Nauka, M., 1969 | MR

[2] Dixmier J., Les algebres d'operators dan's l'espase hilbertien, Gauthier-Villars, Paris, 1969

[3] Takesaki M., “Tomita's theory of modular hilbert algebras and its applications”, Lecture Notes in Math., 128, Springer-Verlag, Berlin, 1970 | MR | Zbl

[4] Powers R. T., “Representation of uniformly hyperfinite algebras and their associated von Neumann rings”, Ann. Math., 86:1 (1967), 138–171 | DOI | MR | Zbl

[5] Araki H., Woods E. J., “A classifications of factors”, Publ. RIMS, Kyoto Univ., Ser. A, 3 (1968), 51–130 | DOI | MR

[6] Araki H., “Asymptotic ratio set and property $L_\lambda^1$”, Publ. RIMS, Kyoto Univ., Ser. A, 6 (1970), 443–460 | DOI | MR

[7] Araki H., “A classifications of factors, II”, Publ. RIMS, Kyoto Univ., Ser. A, 4 (1969), 585–593 | DOI | MR | Zbl

[8] Golodets V. Ya., “Spektralnye svoistva modulyarnykh operatorov”, Funkts. analiz i ego prilozh., 6:1 (1972), 70–72 | MR | Zbl

[9] Golodets V. Ya., Uslovnye ozhidaniya, modulyarnye avtomorfizmy i skreschennye proizvedeniya algebr tipa III, Preprint, FTINT AN USSR, Kharkov, 1971

[10] Connes A., “Un nowel invariant pour les albebres de von Neumann”, Comptes Rendus Acad. Sci., Ser. A, 273 (1971), 900–903 | MR | Zbl

[11] McDuff D., “Central sequences and the hyperfinite factors”, Proc. London Math. Soc., 21:3 (1970), 443–461 | DOI | MR | Zbl

[12] Wright F. B., “A reduction for algebras of finite type”, Ann. Math., 60 (1954), 560–570 | DOI | MR | Zbl

[13] Guichardet A., “Produits tensoriels infinis et representations des relations d'anticommutation”, Ann. Scient. Ec. Norm., 83 (1966), 1–52 | MR | Zbl

[14] Lyubich Yu. I., “O spektre predstavleniya topologicheskoi abelevoi gruppy”, Dokl. AN SSSR, 200:4 (1971), 777–780 | Zbl

[15] Stormer E., “Spectra of states and asymptotically abelian $C^*$-algebras”, Comm. Math. Phys., 28 (1972), 279–294 | DOI | MR

[16] Kaplansky I., “Projection in Banach algebras”, Ann. Math., 53:2 (1951), 235–249 | DOI | MR | Zbl

[17] Denford N., Shvarts Dzh., Lineinye operatory, t. I, IL, M., 1962

[18] Robinson D. W., “Statistical mechanics of quantum spin systems, I”, Comm. Math. Phys., 6 (1967), 151–160 ; “II”, Comm. Math. Phys., 7 (1968), 337–348 | DOI | MR | Zbl | DOI | Zbl

[19] Araki H., “Gibbs states of one dimensional quantum lattice”, Comm. Math. Phys., 14 (1969), 120–157 | DOI | MR | Zbl