Classification of quaternionic spaces with a~transitive solvable group of motions
Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 297-339.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete classification of quaternionic Riemannian spaces (that is, spaces $\mathscr V^n$ with the holonomy group $\Gamma\subset Sp(1)\cdot Sp(m)$, $n=4m$), which admit a transitive solvable group of motions is given. It turns out that the rank of these spaces does not exceed four and that all spaces $\mathscr V^n$ whose rank is less than four are symmetric. The spaces $\mathscr V^n$ of rank four are in natural one-to-one correspondence with the Clifford modules of Atiyah, Bott and Shapiro. In this correspondence, the simplest Clifford modules, which are connected with division algebras, are mapped to symmetric spaces of exceptional Lie groups. Other Clifford modules, which are obtained from the simplest with help of tensor products, direct sums and restrictions, correspond to nonsymmetric spaces. Bibliography: 17 items.
@article{IM2_1975_9_2_a5,
     author = {D. V. Alekseevskii},
     title = {Classification of quaternionic spaces with a~transitive solvable group of motions},
     journal = {Izvestiya. Mathematics },
     pages = {297--339},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a5/}
}
TY  - JOUR
AU  - D. V. Alekseevskii
TI  - Classification of quaternionic spaces with a~transitive solvable group of motions
JO  - Izvestiya. Mathematics 
PY  - 1975
SP  - 297
EP  - 339
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a5/
LA  - en
ID  - IM2_1975_9_2_a5
ER  - 
%0 Journal Article
%A D. V. Alekseevskii
%T Classification of quaternionic spaces with a~transitive solvable group of motions
%J Izvestiya. Mathematics 
%D 1975
%P 297-339
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a5/
%G en
%F IM2_1975_9_2_a5
D. V. Alekseevskii. Classification of quaternionic spaces with a~transitive solvable group of motions. Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 297-339. http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a5/

[1] Berger M., “Remarques sur les groups d'holonomie des varietes riemanniennes”, Comptes Rendus Acad. Sci., 262 (1966), 1316–1318 | MR | Zbl

[2] Alekseevskii D. V., “Rimanovy prostranstva s neobychnymi gruppami golonomii”, Funkts. analiz i ego prilozh., 1968, no. 2, 1–10 | MR | Zbl

[3] Borel A., “Kählerian coset spaces of semi-simple Lie groups”, Proc. Nat. Acad. Sci USA, 40 (1954), 1147–1151 | DOI | MR | Zbl

[4] Hano J., “On Kählerian homogeneous spaces of unimodular groups”, Amer. J. Math., 79 (1957), 885–900 | DOI | MR | Zbl

[5] Pyatetskii-Shapiro I. I., “Ob odnoi probleme E. Kartana”, Dokl. AN SSSR, 124:2 (1959), 272–273

[6] Pyatetskii-Shapiro I. I., “Stroenie $j$-algebr”, Izv. AN SSSR. Ser. matem., 26 (1962), 453–484

[7] Vinberg E. B., Gindikin S. G., “Kelerovy mnogoobraziya, dopuskayuschie tranzitivnuyu razreshimuyu gruppu avtomorfizmov”, Matem. sb., 74:3 (1967), 357–377 | MR | Zbl

[8] Vinberg E. B., Gindikin S. G., Pjatetskii-Shapiro I. I., “Homogeneous Kahler manifolds”, Geometry of homogenous bounded domains (1968, Roma)

[9] Craines V., “Topology of quaternionic manifolds”, Trans. Amer. Math. Soc., 122 (1966), 357–367 | DOI | MR

[10] Gray A., “A note on manifolds, whose holonomy group is a subgroup of $Sp(n)\times Sp(1)$”, Michigan Math. J., 16:2 (1969), 125–128 | DOI | MR | Zbl

[11] Wolf J. A., “Complex Homogeneous Manifolds and Quaternionic Symmetric Spaces”, J. Math. Mech., 14:6 (1965), 1033–1047 | MR | Zbl

[12] Alekseevskii D. V., “Kompaktnye kvaternionnye prostranstva”, Funkts. analiz i ego prilozh., 2:2 (1968), 11–21 | MR

[13] Kobayaschi Sh., Eells J., “Problems in differential geometry”, Proceed. USA–Japan Seminar in differential geometry, Tokyo, 1966, 167–177

[14] Alekseevskii D. V., “Kvaternionnye rimanovy prostranstva s tranzitivnoi reduktivnoi ili razreshimoi gruppoi dvizheniya”, Funkts. analiz i ego prilozh., 4:4 (1970), 68–69 | MR | Zbl

[15] Atiyah M. F., Bott R., Shapiro A., “Clifford modules”, Topology, 3 (1964), 3–38, suppl. 1 | DOI | MR | Zbl

[16] Kobayashi Sh., “Homogeneous Riemannian manifolds of negative curvature”, Bull. Amer. Math. Soc., 68 (1962), 338–339 | DOI | MR | Zbl

[17] Alekseevskii D. V., “Sopryazhennost polyarnykh razlozhenii grupp Li”, Matem. sb., 84:1 (1971), 14–26 | MR | Zbl