Behavior of theta series of degree $n$ under modular substitutions
Izvestiya. Mathematics, Tome 9 (1975) no. 2, pp. 227-241
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $F$ be an integral, symmetric, positive definite matrix of order $m\geqslant1$ with an even diagonal. For the theta series of $F$ of degree $n\geqslant1$ $$ \theta_F^{(n)}(Z)=\sum_x^F\exp(\pi i\operatorname{Tr}(^tXFXZ)), $$ where $X$ runs through all integral $m\times n$ matrices and $Z$ is a point of the Siegel upper halfplane of degree $n$, the congruence subgroup of the group $Sp_n(\mathbf Z)$ is found, with respect to which $\theta_F^{(n)}(Z)$ is a Siegel modular form with a multiplicator system (the analog of the group $\Gamma_0(q)$)). The analogous problem is solved for theta series of degree $n$ with spherical functions. The appropriate multiplicator systems are computed for even $m$. Bibliography: 5 items.
@article{IM2_1975_9_2_a0,
author = {A. N. Andrianov and G. N. Maloletkin},
title = {Behavior of theta series of degree~$n$ under modular substitutions},
journal = {Izvestiya. Mathematics},
pages = {227--241},
year = {1975},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a0/}
}
A. N. Andrianov; G. N. Maloletkin. Behavior of theta series of degree $n$ under modular substitutions. Izvestiya. Mathematics, Tome 9 (1975) no. 2, pp. 227-241. http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a0/
[1] Schoeneberg B., “Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen”, Math. Ann., 116 (1939), 511–523 | DOI | MR | Zbl
[2] Ogg A., Modular forms and Dirichlet series, Benjamin, New York, 1969 | MR | Zbl
[3] Eichler M., Introduction to the theory of algebraic numbers and functions, Academic Press, New York, London, 1966 | MR | Zbl
[4] Raghavan S., “Modular forms of degree $n$ and representations by quadratic forms”, Ann. Math., 70:3 (1959), 446–477 | DOI | MR
[5] Witt E., “Eine Identitüt zwischen Modulformen zweiten Grades”, Abh. Math. Sem. Univ. Hamburg, 14, 1941, 323–337 | MR | Zbl