Behavior of theta series of degree~$n$ under modular substitutions
Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 227-241
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F$ be an integral, symmetric, positive definite matrix of order $m\geqslant1$ with an even diagonal. For the theta series of $F$ of degree $n\geqslant1$
$$
\theta_F^{(n)}(Z)=\sum_x^F\exp(\pi i\operatorname{Tr}(^tXFXZ)),
$$
where $X$ runs through all integral $m\times n$ matrices and $Z$ is a point of the Siegel upper halfplane of degree $n$, the congruence subgroup of the group $Sp_n(\mathbf Z)$ is found, with respect to which $\theta_F^{(n)}(Z)$ is a Siegel modular form with a multiplicator system (the analog of the group $\Gamma_0(q)$)). The analogous problem is solved for theta series of degree $n$ with spherical functions. The appropriate multiplicator systems are computed for even $m$.
Bibliography: 5 items.
@article{IM2_1975_9_2_a0,
author = {A. N. Andrianov and G. N. Maloletkin},
title = {Behavior of theta series of degree~$n$ under modular substitutions},
journal = {Izvestiya. Mathematics },
pages = {227--241},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a0/}
}
A. N. Andrianov; G. N. Maloletkin. Behavior of theta series of degree~$n$ under modular substitutions. Izvestiya. Mathematics , Tome 9 (1975) no. 2, pp. 227-241. http://geodesic.mathdoc.fr/item/IM2_1975_9_2_a0/