On attainable transitions from Morse--Smale systems to systems with many periodic motions
Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1235-1270.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that with the disappearance of equilibrium states of the type saddle-saddle there appear singular sets homeomorphic to a suspension over a certain topological Markov chain. It is established that the corresponding bifurcation surface can separate Morse–Smale systems from systems with a countable set of periodic motions and is $\Omega$-attainable on both sides. On the basis of the results obtained a description is given of the structure of basic sets connected with the appearance of homoclinic curves. Cases are indicated when the description of the structure of the neighborhood of a homoclinic curve coincides with the description of a basic set.
@article{IM2_1974_8_6_a5,
     author = {V. S. Afraimovich and L. P. Shilnikov},
     title = {On attainable transitions from {Morse--Smale} systems to systems with many periodic motions},
     journal = {Izvestiya. Mathematics },
     pages = {1235--1270},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a5/}
}
TY  - JOUR
AU  - V. S. Afraimovich
AU  - L. P. Shilnikov
TI  - On attainable transitions from Morse--Smale systems to systems with many periodic motions
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 1235
EP  - 1270
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a5/
LA  - en
ID  - IM2_1974_8_6_a5
ER  - 
%0 Journal Article
%A V. S. Afraimovich
%A L. P. Shilnikov
%T On attainable transitions from Morse--Smale systems to systems with many periodic motions
%J Izvestiya. Mathematics 
%D 1974
%P 1235-1270
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a5/
%G en
%F IM2_1974_8_6_a5
V. S. Afraimovich; L. P. Shilnikov. On attainable transitions from Morse--Smale systems to systems with many periodic motions. Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1235-1270. http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a5/

[1] Pali Dzh., Smeil S., “Teoremy strukturnoi ustoichivosti”, Matematika, 13(2) (1969), 145–155

[2] Robbin J. W., “A structural stability theorem”, Ann. Math., 94:3 (1971), 447–493 | DOI | MR | Zbl

[3] Mints R. M., “Kharakter nekotorykh tipov slozhnykh sostoyanii ravnovesiya v $n$-mernom prostranstve”, Dokl. AN SSSR, 147:1 (1962), 31–33

[4] Hopf E., “Abzweigung einer periodischen Lösung von einer stationären Lösung”, Berich. Sachs. Acad. Wiss., Leipzig, Math. Phys. Kl., 94:19 (1942), 15–25

[5] Bautin N. N., Povedenie dinamicheskikh sistem vblizi granits oblasti ustoichivosti, Gostekhizdat, M., 1949

[6] Neimark Yu. I., “O nekotorykh sluchayakh zavisimosti periodicheskikh dvizhenii ot parametrov”, Dokl. AN SSSR, 129:4 (1959), 736–739 | MR | Zbl

[7] Sacker R. I., On invariants surfaces and bifurcation of periodic solutions of ordinary differential equations, New York University, 1964

[8] Shilnikov L. P., “O nekotorykh sluchayakh rozhdeniya periodicheskikh dvizhenii iz osobykh traektorii”, Matem. sb., 61(104) (1963), 443–466

[9] Shilnikov L. P., “O rozhdenii periodicheskogo dvizheniya iz traektorii, iduschei iz sostoyaniya ravnovesiya tipa sedlo-sedlo v nego zhe”, Dokl. AN SSSR, 170:1 (1966), 48–52

[10] Shilnikov L. P., “O rozhdenii periodicheskogo dvizheniya iz traektorii, dvoyako-asimptoticheskoi k sostoyaniyu ravnovesiya tipa sedlo”, Matem. sb., 77(118):3 (1968), 461–472 | MR

[11] Gavrilov N. K., Shilnikov L. P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sistemam s negruboi gomoklinicheskoi krivoi, I”, Matem. sb., 88(130):4 (1972), 475–492 ; “II”, Матем. сб., 90(132):1 (1973), 139–157 | MR | Zbl | MR

[12] Pliss V. A., “Printsip svedeniya v teorii ustoichivosti dvizheniya”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1297–1324 | MR | Zbl

[13] Pliss V. A., “O suschestvovanii semeistva periodicheskikh dvizhenii sistemy differentsialnykh uravnenii v sluchae nulevykh kornei”, Differentsialnye uravneniya, I:1 (1965), 17–24

[14] Shilnikov L. P., “Ob odnom novom tipe bifurkatsii mnogomernykh dinamicheskikh sistem”, Dokl. AN SSSR, 189:1 (1969), 59–62 | MR

[15] “Afraimovich V. S., Shilnikov L. P.”, Uspekhi matem. nauk, XXVII:3(165) (1972), 189–190

[16] Afraimovich V. S., Shilnikov L. P., “Ob osobykh mnozhestvakh sistem Morsa–Smeila”, Tr. Mosk. matem. ob-va, 28, 1973, 181–214 | Zbl

[17] Bowen R., “One-dimensional hyperbolic sets for flows”, J. Differential Equations, 12:1 (1972), 173–179 | DOI | MR | Zbl

[18] Mints R. M., “Issledovanie povedeniya traektorii v okrestnosti slozhnogo predelnogo tsikla trekh differentsialnykh uravnenii”, Izv. VUZov, Matematika, 1972, no. 3(118), 46–51 | Zbl

[19] Shilnikov L. P., “Ob odnoi zadache Puankare–Birkgofa”, Matem. sb., 74(116):3 (1967), 378–397 | MR | Zbl

[20] Alekseev V. M., “Kvazisluchainye dinamicheskie sistemy. I: Kvazisluchainye diffeomorfizmy”, Matem. sb., 76(118):1 (1968), 72–134 | Zbl

[21] Smeil S., “Differentsiruemye dinamicheskie sistemy”, Uspekhi matem. nauk, XXV:1(151) (1970), 113–185 | MR